107L

STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Observed: 0.165 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structural basis of amino acid alpha helix propensity.

Blaber, M.Zhang, X.J.Matthews, B.W.

(1993) Science 260: 1637-1640

  • DOI: https://doi.org/10.1126/science.8503008
  • Primary Citation of Related Structures:  
    107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L, 137L, 216L, 217L

  • PubMed Abstract: 
  • The propensity of an amino acid to form an alpha helix in a protein was determined by multiple amino substitutions at positions 44 and 131 in T4 lysozyme. These positions are solvent-exposed sites within the alpha helices that comprise, respectively, residues 39 to 50 and 126 to 134 ...

    The propensity of an amino acid to form an alpha helix in a protein was determined by multiple amino substitutions at positions 44 and 131 in T4 lysozyme. These positions are solvent-exposed sites within the alpha helices that comprise, respectively, residues 39 to 50 and 126 to 134. Except for two acidic substitutions that may be involved in salt bridges, the changes in stability at the two sites agree well. The stability values also agree with those observed for corresponding amino acid substitutions in some model peptides. Thus, helix propensity values derived from model peptides can be applicable to proteins. Among the 20 naturally occurring amino acids, proline, glycine, and alanine each have a structurally unique feature that helps to explain their low or high helix propensities. For the remaining 17 amino acids, it appears that the side chain hydrophobic surface buried against the side of the helix contributes substantially to alpha helix propensity.


    Related Citations: 
    • Control of Enzyme Activity by an Engineered Disulfide Bond
      Matsumura, M., Matthews, B.W.
      (1989) Science 243: 792
    • Structure of Bacteriophage T4 Lysozyme Refined at 1.7 Angstroms Resolution
      Weaver, L.H., Matthews, B.W.
      (1987) J Mol Biol 193: 189

    Organizational Affiliation

    Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene 97403.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
T4 LYSOZYME164Tequatrovirus T4Mutation(s): 0 
Gene Names: E
EC: 3.2.1.17
UniProt
Find proteins for P00720 (Enterobacteria phage T4)
Explore P00720 
Go to UniProtKB:  P00720
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00720
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
BME
Query on BME

Download Ideal Coordinates CCD File 
D [auth A],
E [auth A]
BETA-MERCAPTOETHANOL
C2 H6 O S
DGVVWUTYPXICAM-UHFFFAOYSA-N
 Ligand Interaction
CL
Query on CL

Download Ideal Coordinates CCD File 
B [auth A],
C [auth A]
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Observed: 0.165 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 61α = 90
b = 61β = 90
c = 97.2γ = 120
Software Package:
Software NamePurpose
TNTrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1993-10-31
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-11-29
    Changes: Derived calculations, Other