5OV7

tubulin - rigosertib complex


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.402 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.190 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent.

Jost, M.Chen, Y.Gilbert, L.A.Horlbeck, M.A.Krenning, L.Menchon, G.Rai, A.Cho, M.Y.Stern, J.J.Prota, A.E.Kampmann, M.Akhmanova, A.Steinmetz, M.O.Tanenbaum, M.E.Weissman, J.S.

(2017) Mol. Cell 68: 210-223.e6

  • DOI: 10.1016/j.molcel.2017.09.012

  • PubMed Abstract: 
  • Chemical libraries paired with phenotypic screens can now readily identify compounds with therapeutic potential. A central limitation to exploiting these compounds, however, has been in identifying their relevant cellular targets. Here, we present a ...

    Chemical libraries paired with phenotypic screens can now readily identify compounds with therapeutic potential. A central limitation to exploiting these compounds, however, has been in identifying their relevant cellular targets. Here, we present a two-tiered CRISPR-mediated chemical-genetic strategy for target identification: combined genome-wide knockdown and overexpression screening as well as focused, comparative chemical-genetic profiling. Application of these strategies to rigosertib, a drug in phase 3 clinical trials for high-risk myelodysplastic syndrome whose molecular target had remained controversial, pointed singularly to microtubules as rigosertib's target. We showed that rigosertib indeed directly binds to and destabilizes microtubules using cell biological, in vitro, and structural approaches. Finally, expression of tubulin with a structure-guided mutation in the rigosertib-binding pocket conferred resistance to rigosertib, establishing that rigosertib kills cancer cells by destabilizing microtubules. These results demonstrate the power of our chemical-genetic screening strategies for pinpointing the physiologically relevant targets of chemical agents.


    Organizational Affiliation

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA.,Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3548CH Utrecht, the Netherlands.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address: jonathan.weissman@ucsf.edu.,Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584CT Utrecht, the Netherlands.,Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.,Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland; Biozentrum, University of Basel, 4056 Basel, Switzerland.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.,Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584CT Utrecht, the Netherlands. Electronic address: m.tanenbaum@hubrecht.eu.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Tubulin alpha-1B chain
A, C
451Bos taurusMutation(s): 0 
Find proteins for P81947 (Bos taurus)
Go to UniProtKB:  P81947
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Tubulin beta-2B chain
B, D
445Bos taurusMutation(s): 0 
Gene Names: TUBB2B
Find proteins for Q6B856 (Bos taurus)
Go to Gene View: TUBB2B
Go to UniProtKB:  Q6B856
Entity ID: 3
MoleculeChainsSequence LengthOrganismDetails
Stathmin-4
E
143Rattus norvegicusMutation(s): 0 
Gene Names: Stmn4
Find proteins for P63043 (Rattus norvegicus)
Go to UniProtKB:  P63043
Entity ID: 4
MoleculeChainsSequence LengthOrganismDetails
Uncharacterized protein
F
384Gallus gallusMutation(s): 0 
Gene Names: TTL
Find proteins for E1BQ43 (Gallus gallus)
Go to Gene View: TTL
Go to UniProtKB:  E1BQ43
Small Molecules
Ligands 8 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GDP
Query on GDP

Download SDF File 
Download CCD File 
B, D
GUANOSINE-5'-DIPHOSPHATE
C10 H15 N5 O11 P2
QGWNDRXFNXRZMB-UUOKFMHZSA-N
 Ligand Interaction
GTP
Query on GTP

Download SDF File 
Download CCD File 
A, C
GUANOSINE-5'-TRIPHOSPHATE
C10 H16 N5 O14 P3
XKMLYUALXHKNFT-UUOKFMHZSA-N
 Ligand Interaction
GOL
Query on GOL

Download SDF File 
Download CCD File 
A, B, C
GLYCEROL
GLYCERIN; PROPANE-1,2,3-TRIOL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
CA
Query on CA

Download SDF File 
Download CCD File 
A
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A, B, C, D, F
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
MES
Query on MES

Download SDF File 
Download CCD File 
B
2-(N-MORPHOLINO)-ETHANESULFONIC ACID
C6 H13 N O4 S
SXGZJKUKBWWHRA-UHFFFAOYSA-N
 Ligand Interaction
ACP
Query on ACP

Download SDF File 
Download CCD File 
F
PHOSPHOMETHYLPHOSPHONIC ACID ADENYLATE ESTER
ADENOSINE-5'-[BETA, GAMMA-METHYLENE]TRIPHOSPHATE
C11 H18 N5 O12 P3
UFZTZBNSLXELAL-IOSLPCCCSA-N
 Ligand Interaction
6FS
Query on 6FS

Download SDF File 
Download CCD File 
B, D
N-[2-methoxy-5-({[(E)-2-(2,4,6-trimethoxyphenyl)ethenyl]sulfonyl}methyl)phenyl]glycine
C21 H25 N O8 S
OWBFCJROIKNMGD-BQYQJAHWSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.402 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.190 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 104.732α = 90.00
b = 156.765β = 90.00
c = 182.629γ = 90.00
Software Package:
Software NamePurpose
PHENIXphasing
XDSdata reduction
XDSdata scaling
PHENIXrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2017-10-11
    Type: Initial release
  • Version 1.1: 2017-10-18
    Type: Database references