103L

HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.9 Å

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

How amino-acid insertions are allowed in an alpha-helix of T4 lysozyme.

Heinz, D.W.Baase, W.A.Dahlquist, F.W.Matthews, B.W.

(1993) Nature 361: 561-564

  • DOI: 10.1038/361561a0
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Studies of extant protein sequences indicate that amino-acid insertions and deletions are preferentially located in loop regions, which has traditionally been explained as the result of selection removing deleterious mutations within secondary struct ...

    Studies of extant protein sequences indicate that amino-acid insertions and deletions are preferentially located in loop regions, which has traditionally been explained as the result of selection removing deleterious mutations within secondary structural elements from the population. But there is no a priori reason to discount the possibility that insertions within secondary structure could either be tolerated until compensatory mutations arise, or have effects that are propagated away from secondary structure into loops. Earlier studies have indicated that insertions are generally tolerated, although much less well within secondary structure elements than in loop regions. Here we show that amino-acid insertions in an alpha-helix of T4 lysozyme can be accepted in two different ways. In some cases the inserted amino acids are accommodated within the helix, leading to the translocation of wild-type residues from the helix to the preceding loop. In other cases the insertion causes a 'looping-out' in the first or last turn of the helix. The individual structural responses seem to be dominated by the maintenance of the interface between the helix and the rest of the protein.


    Organizational Affiliation

    Institute of Molecular Biology, University of Oregon, Eugene 97403.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
T4 LYSOZYME
A
167Enterobacteria phage T4Gene Names: E
EC: 3.2.1.17
Find proteins for P00720 (Enterobacteria phage T4)
Go to UniProtKB:  P00720
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CL
Query on CL

Download SDF File 
Download CCD File 
A
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
BME
Query on BME

Download SDF File 
Download CCD File 
A
BETA-MERCAPTOETHANOL
C2 H6 O S
DGVVWUTYPXICAM-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.9 Å
  • Space Group: P 32 2 1
Unit Cell:
Length (Å)Angle (°)
a = 60.900α = 90.00
b = 60.900β = 90.00
c = 95.600γ = 120.00
Software Package:
Software NamePurpose
TNTrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1993-10-31
    Type: Initial release
  • Version 1.1: 2008-03-24
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance