8HY5

Structure of D-amino acid oxidase mutant R38H


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.207 
  • R-Value Observed: 0.208 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.1 of the entry. See complete history


Literature

Structural and mechanistic insights into ALS patient derived mutations in D-amino acid oxidase.

Khan, S.Upadhyay, S.Dave, U.Kumar, A.Gomes, J.

(2023) Int J Biol Macromol 256: 128403-128403

  • DOI: https://doi.org/10.1016/j.ijbiomac.2023.128403
  • Primary Citation of Related Structures:  
    8HY5

  • PubMed Abstract: 

    The D-amino acid oxidase protein modulates neurotransmission by controlling the levels of D-serine, a co-agonist of N-methyl-D-aspartate receptors. Mutations in the DAO gene have been associated with ALS, with some studies reporting pathogenic mechanisms of the R199W mutation. We have characterized two novel mutations R38H and Q201R found in ALS patients and report certain novel findings related to the R199W mutation. We report the first instance of crystal structure analysis of a patient-derived mutant of DAO, R38H, solved at 2.10 Å. The structure revealed significant perturbations and altered binding with the cofactor (FAD) and the inhibitor benzoate, supported by biochemical assays. Q201R-DAO also exhibited significantly lower ligand binding efficiency. Furthermore, kinetic analysis across all variants revealed reduced oxidase activity and substrate binding. Notably, R38H-DAO exhibited near-WT activity only at high substrate concentrations, while R199W-DAO and Q201R-DAO displayed drastic activity reduction. Additionally, structural perturbations were inferred for R199W-DAO and Q201R-DAO, evident by the higher oligomeric state in the holoenzyme form. We also observed thermal instability in case of R199W-DAO mutant. We hypothesize that the mutant enzymes may be rendered non-functional in a cellular context, potentially leading to NMDAR-associated excitotoxicity. The study provides novel insights into structural and functional aspects of DAO mutations in ALS.


  • Organizational Affiliation

    Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110016, India; Indian Council of Medical Research, New Delhi 110029, India.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
D-amino-acid oxidase
A, B
370Homo sapiensMutation(s): 1 
Gene Names: DAODAMOX
EC: 1.4.3.3
UniProt & NIH Common Fund Data Resources
Find proteins for P14920 (Homo sapiens)
Explore P14920 
Go to UniProtKB:  P14920
PHAROS:  P14920
GTEx:  ENSG00000110887 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP14920
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.207 
  • R-Value Observed: 0.208 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 43.756α = 90
b = 74.164β = 91.46
c = 99.037γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
Aimlessdata scaling
PHASERphasing
Cootmodel building

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Other governmentIndia--

Revision History  (Full details and data files)

  • Version 1.0: 2023-01-25
    Type: Initial release
  • Version 1.1: 2024-01-10
    Changes: Data collection, Database references