7ADI

KirBac3.1 W46R: role of a highly conserved tryptophan at the membrane-water interface of Kir channel


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.287 
  • R-Value Work: 0.222 
  • R-Value Observed: 0.225 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Integrative Study of the Structural and Dynamical Properties of a KirBac3.1 Mutant: Functional Implication of a Highly Conserved Tryptophan in the Transmembrane Domain.

Fagnen, C.Bannwarth, L.Oubella, I.Zuniga, D.Haouz, A.Forest, E.Scala, R.Bendahhou, S.De Zorzi, R.Perahia, D.Venien-Bryan, C.

(2021) Int J Mol Sci 23

  • DOI: https://doi.org/10.3390/ijms23010335
  • Primary Citation of Related Structures:  
    7ADI

  • PubMed Abstract: 

    ATP-sensitive potassium (K-ATP) channels are ubiquitously expressed on the plasma membrane of cells in several organs, including the heart, pancreas, and brain, and they govern a wide range of physiological processes. In pancreatic β-cells, K-ATP channels composed of Kir6.2 and SUR1 play a key role in coupling blood glucose and insulin secretion. A tryptophan residue located at the cytosolic end of the transmembrane helix is highly conserved in eukaryote and prokaryote Kir channels. Any mutation on this amino acid causes a gain of function and neonatal diabetes mellitus. In this study, we have investigated the effect of mutation on this highly conserved residue on a KirBac channel (prokaryotic homolog of mammalian Kir6.2). We provide the crystal structure of the mutant KirBac3.1 W46R (equivalent to W68R in Kir6.2) and its conformational flexibility properties using HDX-MS. In addition, the detailed dynamical view of the mutant during the gating was investigated using the in silico method. Finally, functional assays have been performed. A comparison of important structural determinants for the gating mechanism between the wild type KirBac and the mutant W46R suggests interesting structural and dynamical clues and a mechanism of action of the mutation that leads to the gain of function.


  • Organizational Affiliation

    IMPMC, UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Inward rectifier potassium channel Kirbac3.1
A, B
301Paramagnetospirillum magnetotacticumMutation(s): 1 
Membrane Entity: Yes 
UniProt
Find proteins for D9N164 (Magnetospirillum magnetotacticum)
Explore D9N164 
Go to UniProtKB:  D9N164
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupD9N164
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.287 
  • R-Value Work: 0.222 
  • R-Value Observed: 0.225 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 106.77α = 90
b = 113.98β = 90
c = 89.18γ = 90
Software Package:
Software NamePurpose
XDSdata reduction
Aimlessdata scaling
REFMACrefinement
BUSTERrefinement
PDB_EXTRACTdata extraction
PHASERphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Other privateFrance19928
Other governmentFranceANR-EQUIPEX
Other governmentFinlandMRT

Revision History  (Full details and data files)

  • Version 1.0: 2022-01-12
    Type: Initial release
  • Version 1.1: 2022-01-26
    Changes: Database references
  • Version 1.2: 2024-01-31
    Changes: Data collection, Refinement description