6R5G

C-SH2 domain of SHP-2 in complex with phospho-ITSM of PD-1


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 150 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Molecular mechanism of SHP2 activation by PD-1 stimulation.

Marasco, M.Berteotti, A.Weyershaeuser, J.Thorausch, N.Sikorska, J.Krausze, J.Brandt, H.J.Kirkpatrick, J.Rios, P.Schamel, W.W.Kohn, M.Carlomagno, T.

(2020) Sci Adv 6: eaay4458-eaay4458

  • DOI: 10.1126/sciadv.aay4458
  • Primary Citation of Related Structures:  
    6R5G, 6ROZ, 6ROY

  • PubMed Abstract: 
  • In cancer, the programmed death-1 (PD-1) pathway suppresses T cell stimulation and mediates immune escape. Upon stimulation, PD-1 becomes phosphorylated at its immune receptor tyrosine-based inhibitory motif (ITIM) and immune receptor tyrosine-based switch motif (ITSM), which then bind the Src homology 2 (SH2) domains of SH2-containing phosphatase 2 (SHP2), initiating T cell inactivation ...

    In cancer, the programmed death-1 (PD-1) pathway suppresses T cell stimulation and mediates immune escape. Upon stimulation, PD-1 becomes phosphorylated at its immune receptor tyrosine-based inhibitory motif (ITIM) and immune receptor tyrosine-based switch motif (ITSM), which then bind the Src homology 2 (SH2) domains of SH2-containing phosphatase 2 (SHP2), initiating T cell inactivation. The SHP2-PD-1 complex structure and the exact functions of the two SH2 domains and phosphorylated motifs remain unknown. Here, we explain the structural basis and provide functional evidence for the mechanism of PD-1-mediated SHP2 activation. We demonstrate that full activation is obtained only upon phosphorylation of both ITIM and ITSM: ITSM binds C-SH2 with strong affinity, recruiting SHP2 to PD-1, while ITIM binds N-SH2, displacing it from the catalytic pocket and activating SHP2. This binding event requires the formation of a new inter-domain interface, offering opportunities for the development of novel immunotherapeutic approaches.


    Organizational Affiliation

    Helmholtz Centre for Infection Research, Group of Structural Chemistry, Inhoffenstrasse 7, 38124 Braunschweig, Germany.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Tyrosine-protein phosphatase non-receptor type 11A119Homo sapiensMutation(s): 0 
Gene Names: PTPN11PTP2CSHPTP2
EC: 3.1.3.48
UniProt & NIH Common Fund Data Resources
Find proteins for Q06124 (Homo sapiens)
Explore Q06124 
Go to UniProtKB:  Q06124
PHAROS:  Q06124
Protein Feature View
Expand
  • Reference Sequence
  • Find similar proteins by:  Sequence   |   Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
ITSMB11Homo sapiensMutation(s): 0 
Gene Names: PDCD1PD1
UniProt & NIH Common Fund Data Resources
Find proteins for Q15116 (Homo sapiens)
Explore Q15116 
Go to UniProtKB:  Q15116
PHAROS:  Q15116
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
PTR
Query on PTR
BL-PEPTIDE LINKINGC9 H12 N O6 PTYR
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 150 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 
  • OLDERADO: 6R5G Olderado

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data

  • Deposited Date: 2019-03-25 
  • Released Date: 2020-02-05 
  • Deposition Author(s): Marasco, M.

Funding OrganizationLocationGrant Number
German Research FoundationGermanyCA294/20-1

Revision History  (Full details and data files)

  • Version 1.0: 2020-02-05
    Type: Initial release
  • Version 1.1: 2020-02-19
    Changes: Database references
  • Version 1.2: 2020-02-26
    Changes: Database references