5X9H

Crystal structure of the Mg2+ channel MgtE in complex with ATP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.598 Å
  • R-Value Free: 0.283 
  • R-Value Work: 0.250 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

ATP-dependent modulation of MgtE in Mg(2+) homeostasis

Tomita, A.Zhang, M.Jin, F.Zhuang, W.Takeda, H.Maruyama, T.Osawa, M.Hashimoto, K.I.Kawasaki, H.Ito, K.Dohmae, N.Ishitani, R.Shimada, I.Yan, Z.Hattori, M.Nureki, O.

(2017) Nat Commun 8: 148-148

  • DOI: 10.1038/s41467-017-00082-w
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Magnesium is an essential ion for numerous physiological processes. MgtE is a Mg2+ selective channel involved in the maintenance of intracellular Mg2+ homeostasis, whose gating is regulated by intracellular Mg2+ levels. Here, we report that ATP binds ...

    Magnesium is an essential ion for numerous physiological processes. MgtE is a Mg2+ selective channel involved in the maintenance of intracellular Mg2+ homeostasis, whose gating is regulated by intracellular Mg2+ levels. Here, we report that ATP binds to MgtE, regulating its Mg2+-dependent gating. Crystal structures of MgtE-ATP complex show that ATP binds to the intracellular CBS domain of MgtE. Functional studies support that ATP binding to MgtE enhances the intracellular domain affinity for Mg2+ within physiological concentrations of this divalent cation, enabling MgtE to function as an in vivo Mg2+ sensor. ATP dissociation from MgtE upregulates Mg2+ influx at both high and low intracellular Mg2+ concentrations. Using site-directed mutagenesis and structure based-electrophysiological and biochemical analyses, we identify key residues and main structural changes involved in the process. This work provides the molecular basis of ATP-dependent modulation of MgtE in Mg2+ homeostasis.MgtE is an Mg2+ transporter involved in Mg2+ homeostasis. Here, the authors report that ATP regulates the Mg+2-dependent gating of MgtE and use X-ray crystallography combined with functional studies to propose the molecular mechanisms involved in this process.


    Organizational Affiliation

    Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Magnesium transporter MgtE
A, B
473Thermus thermophilus (strain HB8 / ATCC 27634 / DSM 579)Mutation(s): 0 
Find proteins for Q5SMG8 (Thermus thermophilus (strain HB8 / ATCC 27634 / DSM 579))
Go to UniProtKB:  Q5SMG8
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ATP
Query on ATP

Download SDF File 
Download CCD File 
A, B
ADENOSINE-5'-TRIPHOSPHATE
C10 H16 N5 O13 P3
ZKHQWZAMYRWXGA-KQYNXXCUSA-N
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A, B
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.598 Å
  • R-Value Free: 0.283 
  • R-Value Work: 0.250 
  • Space Group: C 1 2 1
Unit Cell:
Length (Å)Angle (°)
a = 135.330α = 90.00
b = 85.651β = 100.02
c = 156.558γ = 90.00
Software Package:
Software NamePurpose
XDSdata reduction
MOLREPphasing
XDSdata scaling
PHENIXrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Ministry of Science and Technology of ChinaChina2016YFA0502800

Revision History 

  • Version 1.0: 2017-08-16
    Type: Initial release
  • Version 1.1: 2017-08-23
    Type: Database references