5WKT

3.2-Angstrom In situ Mylar structure of bovine opsin at 100 K

  • Classification: SIGNALING PROTEIN
  • Organism(s): Bos taurus

  • Deposited: 2017-07-25 Released: 2017-12-13 
  • Deposition Author(s): Broecker, J., Morizumi, T., Ou, W.-L., Ernst, O.P.
  • Funding Organization(s): German Research Foundation (DFG); Canada Excellence Research Chair Program; National Institutes of Health/National Institute of General Medical Sciences 

Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.2 Å
  • R-Value Free: 0.295 
  • R-Value Work: 0.274 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

High-throughput in situ X-ray screening of and data collection from protein crystals at room temperature and under cryogenic conditions.

Broecker, J.Morizumi, T.Ou, W.L.Klingel, V.Kuo, A.Kissick, D.J.Ishchenko, A.Lee, M.Y.Xu, S.Makarov, O.Cherezov, V.Ogata, C.M.Ernst, O.P.

(2018) Nat Protoc 13: 260-292

  • DOI: 10.1038/nprot.2017.135
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Protein crystallography has significantly advanced in recent years, with in situ data collection, in which crystals are placed in the X-ray beam within their growth medium, being a major point of focus. In situ methods eliminate the need to harvest c ...

    Protein crystallography has significantly advanced in recent years, with in situ data collection, in which crystals are placed in the X-ray beam within their growth medium, being a major point of focus. In situ methods eliminate the need to harvest crystals, a previously unavoidable drawback, particularly for often small membrane-protein crystals. Here, we present a protocol for the high-throughput in situ X-ray screening of and data collection from soluble and membrane-protein crystals at room temperature (20-25°C) and under cryogenic conditions. The Mylar in situ method uses Mylar-based film sandwich plates that are inexpensive, easy to make, and compatible with automated imaging, and that show very low background scattering. They support crystallization in microbatch and vapor-diffusion modes, as well as in lipidic cubic phases (LCPs). A set of 3D-printed holders for differently sized patches of Mylar sandwich films makes the method robust and versatile, allows for storage and shipping of crystals, and enables automated mounting at synchrotrons, as well as goniometer-based screening and data collection. The protocol covers preparation of in situ plates and setup of crystallization trials; 3D printing and assembly of holders; opening of plates, isolation of film patches containing crystals, and loading them onto holders; basic screening and data-collection guidelines; and unloading of holders, as well as reuse and recycling of them. In situ plates are prepared and assembled in 1 h; holders are 3D-printed and assembled in ≤90 min; and an in situ plate is opened, and a film patch containing crystals is isolated and loaded onto a holder in 5 min.


    Organizational Affiliation

    GM/CA at Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, USA.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, Los Angeles, California, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Rhodopsin
A
348Bos taurusMutation(s): 0 
Gene Names: RHO
Find proteins for P02699 (Bos taurus)
Go to Gene View: RHO
Go to UniProtKB:  P02699
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Transducin Galpha peptide
B
11N/AMutation(s): 0 
Protein Feature View is not available: No corresponding UniProt sequence found.
Small Molecules
Ligands 6 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
TRE
Query on TRE

Download SDF File 
Download CCD File 
A
TREHALOSE
ALPHA-D-GLUCOPYRANOSYL-ALPHA-D-GLUCOPYRANOSIDE
C12 H22 O11
HDTRYLNUVZCQOY-LIZSDCNHSA-N
 Ligand Interaction
SO4
Query on SO4

Download SDF File 
Download CCD File 
B
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
MAN
Query on MAN

Download SDF File 
Download CCD File 
A
ALPHA-D-MANNOSE
C6 H12 O6
WQZGKKKJIJFFOK-PQMKYFCFSA-N
 Ligand Interaction
BMA
Query on BMA

Download SDF File 
Download CCD File 
A
BETA-D-MANNOSE
C6 H12 O6
WQZGKKKJIJFFOK-RWOPYEJCSA-N
 Ligand Interaction
NAG
Query on NAG

Download SDF File 
Download CCD File 
A
N-ACETYL-D-GLUCOSAMINE
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
 Ligand Interaction
BOG
Query on BOG

Download SDF File 
Download CCD File 
A
B-OCTYLGLUCOSIDE
C14 H28 O6
HEGSGKPQLMEBJL-RKQHYHRCSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.2 Å
  • R-Value Free: 0.295 
  • R-Value Work: 0.274 
  • Space Group: H 3 2
Unit Cell:
Length (Å)Angle (°)
a = 242.043α = 90.00
b = 242.043β = 90.00
c = 110.637γ = 120.00
Software Package:
Software NamePurpose
Aimlessdata scaling
PHASERphasing
iMOSFLMdata reduction
PHENIXrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
German Research Foundation (DFG)GermanyBR 5124/1-1
Canada Excellence Research Chair ProgramCanada--
National Institutes of Health/National Institute of General Medical SciencesUnited StatesR01 GM108635

Revision History 

  • Version 1.0: 2017-12-13
    Type: Initial release
  • Version 1.1: 2018-01-17
    Type: Database references