5N5N

Cryo-EM structure of tsA201 cell alpha1B and betaI and betaIVb microtubules


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 4.2 Å
  • Aggregation State: FILAMENT 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Tubulin isoform composition tunes microtubule dynamics.

Vemu, A.Atherton, J.Spector, J.O.Moores, C.A.Roll-Mecak, A.

(2017) Mol. Biol. Cell 28: 3564-3572

  • DOI: 10.1091/mbc.E17-02-0124

  • PubMed Abstract: 
  • Microtubules polymerize and depolymerize stochastically, a behavior essential for cell division, motility, and differentiation. While many studies advanced our understanding of how microtubule-associated proteins tune microtubule dynamics in trans, w ...

    Microtubules polymerize and depolymerize stochastically, a behavior essential for cell division, motility, and differentiation. While many studies advanced our understanding of how microtubule-associated proteins tune microtubule dynamics in trans, we have yet to understand how tubulin genetic diversity regulates microtubule functions. The majority of in vitro dynamics studies are performed with tubulin purified from brain tissue. This preparation is not representative of tubulin found in many cell types. Here we report the 4.2-Å cryo-electron microscopy (cryo-EM) structure and in vitro dynamics parameters of α1B/βI+βIVb microtubules assembled from tubulin purified from a human embryonic kidney cell line with isoform composition characteristic of fibroblasts and many immortalized cell lines. We find that these microtubules grow faster and transition to depolymerization less frequently compared with brain microtubules. Cryo-EM reveals that the dynamic ends of α1B/βI+βIVb microtubules are less tapered and that these tubulin heterodimers display lower curvatures. Interestingly, analysis of EB1 distributions at dynamic ends suggests no differences in GTP cap sizes. Last, we show that the addition of recombinant α1A/βIII tubulin, a neuronal isotype overexpressed in many tumors, proportionally tunes the dynamics of α1B/βI+βIVb microtubules. Our study is an important step toward understanding how tubulin isoform composition tunes microtubule dynamics.


    Organizational Affiliation

    Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Lung and Blood Institute, Bethesda, MD 20892.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Tubulin beta chain
B, A, C, D, E, F
426Homo sapiensMutation(s): 0 
Gene Names: TUBB (TUBB5)
Find proteins for P07437 (Homo sapiens)
Go to Gene View: TUBB
Go to UniProtKB:  P07437
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Tubulin alpha-1B chain
K, G, H, I, J, L
437Homo sapiensMutation(s): 0 
Gene Names: TUBA1B
Find proteins for P68363 (Homo sapiens)
Go to Gene View: TUBA1B
Go to UniProtKB:  P68363
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GTP
Query on GTP

Download SDF File 
Download CCD File 
G, H, I, J, K, L
GUANOSINE-5'-TRIPHOSPHATE
C10 H16 N5 O14 P3
XKMLYUALXHKNFT-UUOKFMHZSA-N
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A, B, C, D, E, F, G, H, I, J, K, L
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
G2P
Query on G2P

Download SDF File 
Download CCD File 
A, B, C, D, E, F
PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER
C11 H18 N5 O13 P3
GXTIEXDFEKYVGY-KQYNXXCUSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 4.2 Å
  • Aggregation State: FILAMENT 
  • Reconstruction Method: SINGLE PARTICLE 
Software Package:
Software NamePurpose
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Medical Research Council (United Kingdom)United Kingdom--
Intramural Programs of the NINDS and the NHLBI, National Institutes of HealthUnited States--

Revision History 

  • Version 1.0: 2017-11-01
    Type: Initial release
  • Version 1.1: 2017-12-13
    Type: Database references
  • Version 1.2: 2018-10-17
    Type: Data collection, Refinement description