Interdomain motion in liver alcohol dehydrogenase. Structural and energetic analysis of the hinge bending mode.
Colonna-Cesari, F., Perahia, D., Karplus, M., Eklund, H., Braden, C.I., Tapia, O.(1986) J Biol Chem 261: 15273-15280
- PubMed: 3771574 Search on PubMed
- Primary Citation of Related Structures:  
5ADH, 8ADH - PubMed Abstract: 
- Crystallographic Investigations of Nicotinamide Adenine Dinucleotide Binding to Horse Liver Alcohol Dehydrogenase
Eklund, H., Samama, J.-P., Jones, T.A.
(1984) Biochemistry 23: 5982 - Crystal Structures of the Active Site in Specifically Metal-Depleted and Cobalt-Substituted Horse Liver Alcohol Dehydrogenase Derivatives
Schneider, G., Eklund, H., Cedergren-Zeppezauer, E., Zeppezauer, M.
(1983) Proc Natl Acad Sci U S A 80: 5289 - Three-Dimensional Structure of Isonicotinimidylated Liver Alcohol Dehydrogenase
Plapp, B.V., Eklund, H., Jones, T.A., Branden, C.-I.
(1983) J Biol Chem 258: 5537 - Crystal-Structure Determination of Reduced Nicotinamide Adenine Dinucleotide Complex with Horse Liver Alcohol Dehydrogenase Maintained in its Apo Conformation by Zinc-Bound Imidazole
Cedergren-Zeppezauer, E.
(1983) Biochemistry 22: 5761 - Binding of Substrate in a Ternary Complex of Horse Liver Alcohol Dehydrogenase
Eklund, H., Plapp, B.V., Samama, J.-P., Branden, C.-I.
(1982) J Biol Chem 257: 14349 - Crystal Structure Determinations of Coenzyme Analogue and Substrate Complexes of Liver Alcohol Dehydrogeanse. Binding of 1,4,5,6-Tetrahydronicotinamide Adenine Dinucleotide and Trans-4-(N,N-Dimethylamino)Cinnamaldehyde to the Enzyme
Cedergren-Zeppezauer, E., Samama, J.-P., Eklund, H.
(1982) Biochemistry 21: 4895 - Pyrazole Binding in Crystalline Binary and Ternary Complexes with Liver Alcohol Dehydrogenase
Eklund, H., Samama, J.-P., Wallen, L.
(1982) Biochemistry 21: 4858 - Structure of Triclinic Ternary Complex of Horse Liver Alcohol Dehydrogenase at 2.9 Angstroms Resolution
Eklund, H., Samama, J.-P., Wallen, L., Branden, C.-I., Akeson, A., Jones, T.A.
(1981) J Mol Biol 146: 561 - 5-Methylnicotinamide-Adenine Dinucleotide. Kinetic Investigation with Major and Minor Isoenzymes of Liver Alcohol Dehydrogenase and Structural Determination of its Binary Complex with Alcohol Dehydrogenase
Samama, J.-P., Wrixon, A.D., Biellmann, J.-F.
(1981) Eur J Biochem 118: 479 - Structural Differences between Apo-and Holoenzyme of Horse Liver Alcohol Dehydrogenase
Eklund, H., Branden, C.-I.
(1979) J Biol Chem 254: 3458 - X-Ray Studies of the Binding of Cibacron Blue F3Ga to Liver Alcohol Dehydrogenase
Biellmann, J.-F., Samama, J.-P., Branden, C.I., Eklund, H.
(1979) Eur J Biochem 102: 107 - Crystallography of Liver Alcohol Dehydrogenase Complexed with Substrates
Plapp, B.V., Eklund, H., Branden, C.-I.
(1978) J Mol Biol 122: 23 - Crystallization of Liver Alcohol Denydrogenase Activated by the Modification of Amino Groups
Plapp, B.V., Zeppezauer, E., Branden, C.-I.
(1978) J Mol Biol 119: 451 - Subunit Conformation of Yeast Alcohol Dehydrogenase
Jornvall, H., Eklund, H., Branden, C.-I.
(1978) J Biol Chem 253: 8414 - The Crystal Structure of Complexes between Horse Liver Alcohol Dehydrogenase and the Coenzyme Analogues 3-Iodopyridine-Adenine Dinucleotide and Pyridine-Adenine Dinucleotide
Samama, J.-P., Zeppezauer, E., Biellmann, J.-F., Branden, C.-I.
(1977) Eur J Biochem 81: 403 - X-Ray Investigation of the Binding of 1,10-Phenanthroline and Imidazole to Horse-Liver Alcohol Dehydrogenase
Boiwe, T., Branden, C.-I.
(1977) Eur J Biochem 77: 173 - Three-Dimensional Structure of Horse Liver Alcohol Dehydrogenase at 2.4 Angstroms Resolution
Eklund, H., Nordstrom, B., Zeppezauer, E., Soderlund, G., Ohlsson, I., Boiwe, T., Soderberg, B.-O., Tapia, O., Branden, C.-I., Akeson, A.
(1976) J Mol Biol 102: 27 - Structural Comparisons of Mammalian, Yeast and Bacillar Alcohol Dehydrogenases
Eklund, H., Branden, C.-I., Jornvall, H.
(1976) J Mol Biol 102: 61 - The Binding of Nucleotides to Horse Liver Alcohol Dehydrogenase
Nordstrom, B., Branden, C.-I.
(1975) Structure And Conformation Of Nucleic Acids And Protein-nucleic Acid Interactions : Proceedings Of The Fourth Annual Harry Steenbock Symposium, June 16-19, 1974, Madison, Wisconsin --: 387 - Alcohol Dehydrogenases
Branden, C.-I., Jornvall, H., Eklund, H., Furugren, B.
(1975) The Enzymes,third Edition 11: 103 - The Conformation of Adenosine Diphosphoribose and 8-Bromoadenosine Diphosphoribose When Bound to Liver Alcohol Dehydrogenase
Abdallah, M.A., Biellmann, J.-F., Nordstrom, B., Branden, C.-I.
(1975) Eur J Biochem 50: 475 - The Structure of Horse Liver Alcohol Dehydrogenase
Eklund, H., Nordstrom, B., Zeppezauer, E., Soderlund, G., Ohlsson, I., Boiwe, T., Branden, C.-I.
(1974) FEBS Lett 44: 200 - Structural and Functional Similarities within the Coenzyme Binding Domains of Dehydrogenases
Ohlsson, I., Nordstrom, B., Branden, C.-I.
(1974) J Mol Biol 89: 339 - Binding of Salicylate in the Adenosine-Binding Pocket of Dehydrogenases
Einarsson, R., Eklund, H., Zeppezauer, E., Boiwe, T., Branden, C.-I.
(1974) Eur J Biochem 49: 41 - Structure of Liver Alcohol Dehydrogenase at 2.9-Angstroms Resolution
Branden, C.-I., Eklund, H., Nordstrom, B., Boiwe, T., Soderlund, G., Zeppezauer, E., Ohlsson, I., Akeson, A.
(1973) Proc Natl Acad Sci U S A 70: 2439 - Structure of Horse Liver Alcohol Dehydrogenase. I. Structural Symmetry and Conformational Changes
Branden, C.-I.
(1965) Arch Biochem Biophys 112: 215
A study of the hinge bending mode in the enzyme liver alcohol dehydrogenase is made by use of empirical energy functions. The enzyme is a dimer, with each monomer composed of a coenzyme binding domain and a catalytic domain with a large cleft between the two ...
A study of the hinge bending mode in the enzyme liver alcohol dehydrogenase is made by use of empirical energy functions. The enzyme is a dimer, with each monomer composed of a coenzyme binding domain and a catalytic domain with a large cleft between the two. Superposition of the apoenzyme and holoenzyme crystal structures is used to determine a rigid rotation axis for closing of the cleft. It is shown that a rigid body transformation of the apoenzyme to the holoenzyme structure corresponds to a 10 degrees rotation of the catalytic domain about this axis. The rotation is not along the least-motion path for closing of the cleft but instead corresponds to the catalytic domain coming closer to the coenzyme binding domain by a sliding motion. Estimation of the energy associated with the interdomain motion of the apoenzyme over a range of 90 degrees (-40 to 50 degrees, where 0 degrees corresponds to the minimized crystal structure) demonstrates that local structural relaxation makes possible large-scale rotations with relatively small energy increments. A variety of structural rearrangements associated with the domain motion are characterized. They involve the hinge region residues that provide the covalent connections between the two domains and certain loop regions that are brought into contact by the rotation. Differences between the energy minimized and the holoenzyme structures point to the existence of alternative conformations for loops and to the importance of the ligands in the structural rearrangements.
Related Citations: 
Organizational Affiliation: 
Max-Planck-Institut für Biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, Am Fassberg 11, D-37077 Göttingen, Germany.