3GXB

Crystal structure of VWF A2 domain


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.224 
  • R-Value Work: 0.183 
  • R-Value Observed: 0.185 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structural specializations of A2, a force-sensing domain in the ultralarge vascular protein von Willebrand factor.

Zhang, Q.Zhou, Y.F.Zhang, C.Z.Zhang, X.Lu, C.Springer, T.A.

(2009) Proc Natl Acad Sci U S A 106: 9226-9231

  • DOI: 10.1073/pnas.0903679106
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • The lengths of von Willebrand factor (VWF) concatamers correlate with hemostatic potency. After secretion in plasma, length is regulated by hydrodynamic shear force-dependent unfolding of the A2 domain, which is then cleaved by a specific protease. T ...

    The lengths of von Willebrand factor (VWF) concatamers correlate with hemostatic potency. After secretion in plasma, length is regulated by hydrodynamic shear force-dependent unfolding of the A2 domain, which is then cleaved by a specific protease. The 1.9-A crystal structure of the A2 domain demonstrates evolutionary adaptations to this shear sensor function. Unique among VWF A (VWA) domains, A2 contains a loop in place of the alpha4 helix, and a cis-proline. The central beta4-strand is poorly packed, with multiple side-chain rotamers. The Tyr-Met cleavage site is buried in the beta4-strand in the central hydrophobic core, and the Tyr structurally links to the C-terminal alpha6-helix. The alpha6-helix ends in 2 Cys residues that are linked by an unusual vicinal disulfide bond that is buried in a hydrophobic pocket. These features may narrow the force range over which unfolding occurs and may also slow refolding. Von Willebrand disease mutations, which presumably lower the force at which A2 unfolds, are illuminated by the structure.


    Organizational Affiliation

    Immune Disease Institute, Children's Hospital Boston and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
von Willebrand factor
A, B
184Homo sapiensMutation(s): 0 
Gene Names: F8VWFVWF
Find proteins for P04275 (Homo sapiens)
Go to UniProtKB:  P04275
NIH Common Fund Data Resources
PHAROS  P04275
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NAG
Query on NAG

Download CCD File 
A, B
N-ACETYL-D-GLUCOSAMINE
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
 Ligand Interaction
SO4
Query on SO4

Download CCD File 
B
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.224 
  • R-Value Work: 0.183 
  • R-Value Observed: 0.185 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 55.11α = 90
b = 60.81β = 99.09
c = 56.35γ = 90
Software Package:
Software NamePurpose
XSCALEdata scaling
MOLREPphasing
REFMACrefinement
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-05-05
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Advisory, Version format compliance