3DK2

Crystal structure of transthyretin variant Y114H at acidic pH


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.35 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.217 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Amyloidogenic potential of transthyretin variants: insights from structural and computational analyses.

Cendron, L.Trovato, A.Seno, F.Folli, C.Alfieri, B.Zanotti, G.Berni, R.

(2009) J.Biol.Chem. 284: 25832-25841

  • DOI: 10.1074/jbc.M109.017657
  • Primary Citation of Related Structures:  3DJR, 3DJS, 3DJT, 3DJZ, 3DK0
  • Also Cited By: 4I85, 4I87, 4I89

  • PubMed Abstract: 
  • Human transthyretin (TTR) is an amyloidogenic protein whose mild amyloidogenicity is enhanced by many point mutations affecting considerably the amyloid disease phenotype. To ascertain whether the high amyloidogenic potential of TTR variants may be e ...

    Human transthyretin (TTR) is an amyloidogenic protein whose mild amyloidogenicity is enhanced by many point mutations affecting considerably the amyloid disease phenotype. To ascertain whether the high amyloidogenic potential of TTR variants may be explained on the basis of the conformational change hypothesis, an aim of this work was to determine structural alterations for five amyloidogenic TTR variants crystallized under native and/or destabilizing (moderately acidic pH) conditions. While at acidic pH structural changes may be more significant because of a higher local protein flexibility, only limited alterations, possibly representing early events associated with protein destabilization, are generally induced by mutations. This study was also aimed at establishing to what extent wild-type TTR and its amyloidogenic variants are intrinsically prone to beta-aggregation. We report the results of a computational analysis predicting that wild-type TTR possesses a very high intrinsic beta-aggregation propensity which is on average not enhanced by amyloidogenic mutations. However, when located in beta-strands, most of these mutations are predicted to destabilize the native beta-structure. The analysis also shows that rat and murine TTR have a lower intrinsic beta-aggregation propensity and a similar native beta-structure stability compared with human TTR. This result is consistent with the lack of in vitro amyloidogenicity found for both murine and rat TTR. Collectively, the results of this study support the notion that the high amyloidogenic potential of human pathogenic TTR variants is determined by the destabilization of their native structures, rather than by a higher intrinsic beta-aggregation propensity.


    Related Citations: 
    • A Comparative Analysis of 23 Structures of the Amyloidogenic Protein Transthyretin.
      Eneqvist, T.,Olofsson, A.,Lundgren, E.,Sauer-Eriksson, A.E.
      (2000) J.Mol.Biol. 302: 649
    • Acidic Ph-Induced Conformational Changes in Amyloidogenic Mutant Transthyretin.
      Pasquato, N.,Berni, R.,Folli, C.,Alfieri, B.,Cendron, L.,Zanotti, G.
      (2007) J.Mol.Biol. 366: 711


    Organizational Affiliation

    Department of Biological Chemistry, University of Padua, and Istituto di Chimica Biomolecolare, Section of Padua, Viale G. Colombo 3, 35121 Padua, Italy.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Transthyretin
A, B
127Homo sapiensGene Names: TTR (PALB)
Find proteins for P02766 (Homo sapiens)
Go to Gene View: TTR
Go to UniProtKB:  P02766
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.35 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.217 
  • Space Group: P 21 21 2
Unit Cell:
Length (Å)Angle (°)
a = 42.341α = 90.00
b = 85.784β = 90.00
c = 62.652γ = 90.00
Software Package:
Software NamePurpose
REFMACrefinement
ADSCdata collection
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-07-14
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance
  • Version 1.2: 2014-03-05
    Type: Database references