3DJZ

Crystal structure of transthyretin variant L55P at neutral pH


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.82 Å
  • R-Value Free: 0.219 
  • R-Value Work: 0.196 
  • R-Value Observed: 0.197 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Amyloidogenic potential of transthyretin variants: insights from structural and computational analyses.

Cendron, L.Trovato, A.Seno, F.Folli, C.Alfieri, B.Zanotti, G.Berni, R.

(2009) J Biol Chem 284: 25832-25841

  • DOI: 10.1074/jbc.M109.017657
  • Primary Citation of Related Structures:  
    3DK2, 3DJR, 3DJS, 3DJT, 3DK0, 3DJZ

  • PubMed Abstract: 
  • Human transthyretin (TTR) is an amyloidogenic protein whose mild amyloidogenicity is enhanced by many point mutations affecting considerably the amyloid disease phenotype. To ascertain whether the high amyloidogenic potential of TTR variants may be e ...

    Human transthyretin (TTR) is an amyloidogenic protein whose mild amyloidogenicity is enhanced by many point mutations affecting considerably the amyloid disease phenotype. To ascertain whether the high amyloidogenic potential of TTR variants may be explained on the basis of the conformational change hypothesis, an aim of this work was to determine structural alterations for five amyloidogenic TTR variants crystallized under native and/or destabilizing (moderately acidic pH) conditions. While at acidic pH structural changes may be more significant because of a higher local protein flexibility, only limited alterations, possibly representing early events associated with protein destabilization, are generally induced by mutations. This study was also aimed at establishing to what extent wild-type TTR and its amyloidogenic variants are intrinsically prone to beta-aggregation. We report the results of a computational analysis predicting that wild-type TTR possesses a very high intrinsic beta-aggregation propensity which is on average not enhanced by amyloidogenic mutations. However, when located in beta-strands, most of these mutations are predicted to destabilize the native beta-structure. The analysis also shows that rat and murine TTR have a lower intrinsic beta-aggregation propensity and a similar native beta-structure stability compared with human TTR. This result is consistent with the lack of in vitro amyloidogenicity found for both murine and rat TTR. Collectively, the results of this study support the notion that the high amyloidogenic potential of human pathogenic TTR variants is determined by the destabilization of their native structures, rather than by a higher intrinsic beta-aggregation propensity.


    Related Citations: 
    • Acidic Ph-Induced Conformational Changes in Amyloidogenic Mutant Transthyretin.
      Pasquato, N., Berni, R., Folli, C., Alfieri, B., Cendron, L., Zanotti, G.
      (2007) J Mol Biol 366: 711
    • A Comparative Analysis of 23 Structures of the Amyloidogenic Protein Transthyretin.
      Eneqvist, T., Olofsson, A., Lundgren, E., Sauer-Eriksson, A.E.
      (2000) J Mol Biol 302: 649

    Organizational Affiliation

    Department of Biological Chemistry, University of Padua, and Istituto di Chimica Biomolecolare, Section of Padua, Viale G. Colombo 3, 35121 Padua, Italy.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
TransthyretinAB127Homo sapiensMutation(s): 1 
Gene Names: TTRPALB
Find proteins for P02766 (Homo sapiens)
Explore P02766 
Go to UniProtKB:  P02766
NIH Common Fund Data Resources
PHAROS  P02766
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.82 Å
  • R-Value Free: 0.219 
  • R-Value Work: 0.196 
  • R-Value Observed: 0.197 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 42.729α = 90
b = 83.628β = 90
c = 66.598γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
ADSCdata collection
MOSFLMdata reduction
SCALAdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-07-14
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2014-03-05
    Changes: Database references