2XJC

Crystal structure of the D52N variant of cytosolic 5'-nucleotidase II in complex with guanosine monophosphate and diadenosine tetraphosphate


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.219 
  • R-Value Work: 0.176 
  • R-Value Observed: 0.178 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural Basis for the Allosteric Regulation and Substrate Recognition of Human Cytosolic 5'-Nucleotidase II

Wallden, K.Nordlund, P.

(2011) J Mol Biol 408: 684

  • DOI: 10.1016/j.jmb.2011.02.059
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Cytosolic 5'-nucleotidase II (cN-II) catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates and participates in the regulation of purine nucleotide pools within the cell. It interferes with the phosphorylation-dependent activ ...

    Cytosolic 5'-nucleotidase II (cN-II) catalyzes the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates and participates in the regulation of purine nucleotide pools within the cell. It interferes with the phosphorylation-dependent activation of nucleoside analogues used in the treatment of cancer and viral diseases. It is allosterically activated by a number of phosphate-containing cellular metabolites such as ATP, diadenosine polyphosphates, and 2,3-bisphosphoglycerate, which couple its activity with the metabolic state of the cell. We present seven high-resolution structures of human cN-II, including a ligand-free form and complexes with various substrates and effectors. These structures reveal the structural basis for the allosteric activation of cN-II, uncovering a mechanism where an effector-induced disorder-to-order transition generates rearrangements within the catalytic site and the subsequent coordination of the catalytically essential magnesium. Central to the activation is the large transition of the catalytically essential Asp356. This study also provides the structural basis for the substrate specificity of cN-II, where Arg202, Asp206, and Phe157 seem to be important residues for purine/pyrimidine selectivity. These structures provide a comprehensive structural basis for the design of cN-II inhibitors. They also contribute to the understanding of how the nucleotide salvage pathway is regulated at a molecular level.


    Organizational Affiliation

    Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
CYTOSOLIC PURINE 5'-NUCLEOTIDASEA554Homo sapiensMutation(s): 1 
Gene Names: NT5C2NT5BNT5CPPNT5
EC: 3.1.3.5
Find proteins for P49902 (Homo sapiens)
Explore P49902 
Go to UniProtKB:  P49902
NIH Common Fund Data Resources
PHAROS  P49902
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 4 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
B4P
Query on B4P

Download CCD File 
A
BIS(ADENOSINE)-5'-TETRAPHOSPHATE
C20 H28 N10 O19 P4
YOAHKNVSNCMZGQ-XPWFQUROSA-N
 Ligand Interaction
5GP
Query on 5GP

Download CCD File 
A
GUANOSINE-5'-MONOPHOSPHATE
C10 H14 N5 O8 P
RQFCJASXJCIDSX-UUOKFMHZSA-N
 Ligand Interaction
GOL
Query on GOL

Download CCD File 
A
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
MG
Query on MG

Download CCD File 
A
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.219 
  • R-Value Work: 0.176 
  • R-Value Observed: 0.178 
  • Space Group: I 2 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 91.54α = 90
b = 127.36β = 90
c = 130.24γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
XDSdata reduction
XSCALEdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2011-03-16
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance