2WP3

Crystal structure of the Titin M10-Obscurin like 1 Ig complex


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.48 Å
  • R-Value Free: 0.217 
  • R-Value Work: 0.175 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structural Insight Into M-Band Assembly and Mechanics from the Titin-Obscurin-Like-1 Complex.

Pernigo, S.Fukuzawa, A.Bertz, M.Holt, M.Rief, M.Steiner, R.A.Gautel, M.

(2010) Proc.Natl.Acad.Sci.USA 107: 2908

  • DOI: 10.1073/pnas.0913736107
  • Primary Citation of Related Structures:  
  • Also Cited By: 2Y9R

  • PubMed Abstract: 
  • In the sarcomeric M-band, the giant ruler proteins titin and obscurin, its small homologue obscurin-like-1 (obsl1), and the myosin cross-linking protein myomesin form a ternary complex that is crucial for the function of the M-band as a mechanical li ...

    In the sarcomeric M-band, the giant ruler proteins titin and obscurin, its small homologue obscurin-like-1 (obsl1), and the myosin cross-linking protein myomesin form a ternary complex that is crucial for the function of the M-band as a mechanical link. Mutations in the last titin immunoglobulin (Ig) domain M10, which interacts with the N-terminal Ig-domains of obscurin and obsl1, lead to hereditary muscle diseases. The M10 domain is unusual not only in that it is a frequent target of disease-linked mutations, but also in that it is the only currently known muscle Ig-domain that interacts with two ligands--obscurin and obsl1--in different sarcomeric subregions. Using x-ray crystallography, we show the structural basis for titin M10 interaction with obsl1 in a novel antiparallel Ig-Ig architecture and unravel the molecular basis of titin-M10 linked myopathies. The severity of these pathologies correlates with the disruption of the titin-obsl1/obscurin complex. Conserved signature residues at the interface account for differences in affinity that direct the cellular sorting in cardiomyocytes. By engineering the interface signature residues of obsl1 to obscurin, and vice versa, their affinity for titin can be modulated similar to the native proteins. In single-molecule force-spectroscopy experiments, both complexes yield at forces of around 30 pN, much lower than those observed for the mechanically stable Z-disk complex of titin and telethonin, suggesting why even moderate weakening of the obsl1/obscurin-titin links has severe consequences for normal muscle functions.


    Organizational Affiliation

    King's College London BHF Research Excellence Centre, Randall Division for Cell and Molecular Biophysics and Cardiovascular Division, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
OBSCURIN-LIKE PROTEIN 1
O
109Homo sapiensMutation(s): 0 
Gene Names: OBSL1 (KIAA0657)
Find proteins for O75147 (Homo sapiens)
Go to Gene View: OBSL1
Go to UniProtKB:  O75147
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
TITIN
T
102Homo sapiensMutation(s): 0 
Gene Names: TTN
EC: 2.7.11.1
Find proteins for Q8WZ42 (Homo sapiens)
Go to Gene View: TTN
Go to UniProtKB:  Q8WZ42
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download SDF File 
Download CCD File 
O
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
GOL
Query on GOL

Download SDF File 
Download CCD File 
O, T
GLYCEROL
GLYCERIN; PROPANE-1,2,3-TRIOL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.48 Å
  • R-Value Free: 0.217 
  • R-Value Work: 0.175 
  • Space Group: P 31
Unit Cell:
Length (Å)Angle (°)
a = 61.674α = 90.00
b = 61.674β = 90.00
c = 42.347γ = 120.00
Software Package:
Software NamePurpose
REFMACrefinement
MOLREPphasing
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2010-02-16
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Advisory, Version format compliance
  • Version 1.2: 2011-08-24
    Type: Derived calculations