2MTS

Three-Dimensional Structure and Interaction Studies of Hepatitis C Virus p7 in 1,2-Dihexanoyl-sn-glycero-3-phosphocholine by Solution Nuclear Magnetic Resonance


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Three-dimensional structure and interaction studies of hepatitis C virus p7 in 1,2-dihexanoyl-sn-glycero-3-phosphocholine by solution nuclear magnetic resonance.

Cook, G.A.Dawson, L.A.Tian, Y.Opella, S.J.

(2013) Biochemistry 52: 5295-5303

  • DOI: https://doi.org/10.1021/bi4006623
  • Primary Citation of Related Structures:  
    2MTS

  • PubMed Abstract: 

    Hepatitis C virus (HCV) protein p7 plays an important role in the assembly and release of mature virus particles. This small 63-residue membrane protein has been shown to induce channel activity, which may contribute to its functions. p7 is highly conserved throughout the entire range of HCV genotypes, which contributes to making p7 a potential target for antiviral drugs. The secondary structure of p7 from the J4 genotype and the tilt angles of the helices within bilayers have been previously characterized by nuclear magnetic resonance (NMR). Here we describe the three-dimensional structure of p7 in short chain phospholipid (1,2-dihexanoyl-sn-glycero-3-phosphocholine) micelles, which provide a reasonably effective membrane-mimicking environment that is compatible with solution NMR experiments. Using a combination of chemical shifts, residual dipolar couplings, and PREs, we determined the structure of p7 using an implicit membrane potential combining both CS-Rosetta decoys and Xplor-NIH refinement. The final set of structures has a backbone root-mean-square deviation of 2.18 Å. Molecular dynamics simulations in NAMD indicate that several side chain interactions might be taking place and that these could affect the dynamics of the protein. In addition to probing the dynamics of p7, we evaluated several drug-protein and protein-protein interactions. Established channel-blocking compounds such as amantadine, hexamethylene amiloride, and long alkyl chain iminosugar derivatives inhibit the ion channel activity of p7. It has also been shown that the protein interacts with HCV nonstructural protein 2 at the endoplasmic reticulum and that this interaction may be important for the infectivity of the virus. Changes in the chemical shift frequencies of solution NMR spectra identify the residues taking part in these interactions.


  • Organizational Affiliation

    Department of Chemistry and Biochemistry, University of California at San Diego , La Jolla, California 92093, United States.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
HEPATITIS C VIRUS P7 PROTEIN63Hepatitis C virus isolate HC-J4Mutation(s): 1 
Gene Names: Hepatitis C virus (HCV)
Membrane Entity: Yes 
UniProt
Find proteins for O92972 (Hepatitis C virus genotype 1b (strain HC-J4))
Explore O92972 
Go to UniProtKB:  O92972
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO92972
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-10-15
    Type: Initial release
  • Version 1.1: 2023-06-14
    Changes: Data collection, Database references, Other