1WMB

Crystal structure of NAD dependent D-3-hydroxybutylate dehydrogenase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.216 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

d-3-Hydroxybutyrate Dehydrogenase from Pseudomonas fragi: Molecular Cloning of the Enzyme Gene and Crystal Structure of the Enzyme

Ito, K.Nakajima, Y.Ichihara, E.Ogawa, K.Katayama, N.Nakashima, K.Yoshimoto, T.

(2006) J.Mol.Biol. 355: 722-733

  • DOI: 10.1016/j.jmb.2005.10.072
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The gene coding for d-3-hydroxybutyrate dehydrogenase (HBDH) was cloned from Pseudomonas fragi. The nucleotide sequence contained a 780 bp open reading frame encoding a 260 amino acid residue protein. The recombinant enzyme was efficiently expressed ...

    The gene coding for d-3-hydroxybutyrate dehydrogenase (HBDH) was cloned from Pseudomonas fragi. The nucleotide sequence contained a 780 bp open reading frame encoding a 260 amino acid residue protein. The recombinant enzyme was efficiently expressed in Escherichia coli cells harboring pHBDH11 and was purified to homogeneity as judged by SDS-PAGE. The enzyme showed a strict stereospecificity to the D-enantiomer (3R-configuration) of 3-hydroxybutyrate as a substrate. Crystals of the ligand-free HBDH and of the enzyme-NAD+ complex were obtained using the hanging-drop, vapor-diffusion method. The crystal structure of the HBDH was solved by the multiwavelength anomalous diffraction method using the SeMet-substituted enzyme and was refined to 2.0 A resolution. The overall structure of P.fragi HBDH, including the catalytic tetrad of Asn114, Ser142, Tyr155, and Lys159, shows obvious relationships with other members of the short-chain dehydrogenase/reductase (SDR) family. A cacodylate anion was observed in both the ligand-free enzyme and the enzyme-NAD+ complex, and was located near the catalytic tetrad. It was shown that the cacodylate inhibited the NAD+-dependent D-3-hydroxybutyrate dehydrogenation competitively, with a Ki value of 5.6 mM. From the interactions between cacodylate and the enzyme, it is predicted that substrate specificity is achieved through the recognition of the 3-methyl and carboxyl groups of the substrate.


    Organizational Affiliation

    Department of Molecular Medicinal Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan. k.ito@net.nagasaki-u.ac.jp




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
D(-)-3-hydroxybutyrate dehydrogenase
A, B
260Pseudomonas fragiMutation(s): 0 
EC: 1.1.1.30
Find proteins for Q5KST5 (Pseudomonas fragi)
Go to UniProtKB:  Q5KST5
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
MG
Query on MG

Download SDF File 
Download CCD File 
A, B
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
CAC
Query on CAC

Download SDF File 
Download CCD File 
A, B
CACODYLATE ION
dimethylarsinate
C2 H6 As O2
OGGXGZAMXPVRFZ-UHFFFAOYSA-M
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.216 
  • Space Group: P 21 21 2
Unit Cell:
Length (Å)Angle (°)
a = 64.336α = 90.00
b = 99.025β = 90.00
c = 110.229γ = 90.00
Software Package:
Software NamePurpose
CNSrefinement
CCP4data scaling
SOLVEphasing
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2005-09-06
    Type: Initial release
  • Version 1.1: 2008-04-30
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Derived calculations, Version format compliance