1UHG

Crystal Structure of S-Ovalbumin At 1.9 Angstrom Resolution


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.9 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.196 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Crystal Structure of S-ovalbumin as a Non-loop-inserted Thermostabilized Serpin Form

Yamasaki, M.Takahashi, N.Hirose, M.

(2003) J.Biol.Chem. 278: 35524-35530

  • DOI: 10.1074/jbc.M305926200

  • PubMed Abstract: 
  • Ovalbumin, a non-inhibitory member of serine proteinase inhibitors (serpin), is transformed into a heat-stabilized form, S-ovalbumin, under elevated pH conditions. The structural mechanism for the S-ovalbumin formation has long been a puzzling questi ...

    Ovalbumin, a non-inhibitory member of serine proteinase inhibitors (serpin), is transformed into a heat-stabilized form, S-ovalbumin, under elevated pH conditions. The structural mechanism for the S-ovalbumin formation has long been a puzzling question in food science and serpin structural biology. On the basis of the commonly observed serpin thermostabilization by insertion of the reactive center loop into the proximal beta-sheet, the most widely accepted hypothetical model has included partial loop insertion. Here we demonstrate, for the first time, the crystal structure of S-ovalbumin at 1.9-A resolution. This structure unequivocally excludes the partial loop insertion mechanism; the overall structure, including the reactive center loop structure, is almost the same as that of native ovalbumin, except for the significant motion of the preceding loop of strand 1A away from strand 2A. The most striking finding is that Ser-164, Ser-236, and Ser-320 take the d-amino acid residue configuration. These chemical inversions can be directly related to the irreversible and stepwise nature of the transformation from native ovalbumin to S-ovalbumin. As conformational changes of the side chains, significant alternations are found in the values of the chi 1 of Phe-99 and the chi 3 of Met-241. The former conformational change leads to the decreased solvent accessibility of the hydrophobic core around Phe-99, which includes Phe-180 and Phe-378, the highly conserved residues in serpin. This may give a thermodynamic advantage to the structural stability of S-ovalbumin.


    Organizational Affiliation

    Division of Applied Life Sciences, The Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Ovalbumin
A, B, C, D
385Gallus gallusMutation(s): 0 
Gene Names: SERPINB14
Find proteins for P01012 (Gallus gallus)
Go to UniProtKB:  P01012
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download SDF File 
Download CCD File 
A, B, C, D
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
NAG
Query on NAG

Download SDF File 
Download CCD File 
A, B, C, D
N-ACETYL-D-GLUCOSAMINE
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
 Ligand Interaction
Modified Residues  2 Unique
IDChainsTypeFormula2D DiagramParent
SEP
Query on SEP
A, B, C, D
L-PEPTIDE LINKINGC3 H8 N O6 PSER
DSN
Query on DSN
A, B, C, D
D-PEPTIDE LINKINGC3 H7 N O3

--

Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.9 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.196 
  • Space Group: P 1
Unit Cell:
Length (Å)Angle (°)
a = 62.647α = 87.24
b = 70.914β = 71.73
c = 83.386γ = 75.95
Software Package:
Software NamePurpose
CCP4phasing
d*TREKdata scaling
CNSrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2003-07-22
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Non-polymer description, Version format compliance