1L54

THE STRUCTURAL AND THERMODYNAMIC CONSEQUENCES OF BURYING A CHARGED RESIDUE WITHIN THE HYDROPHOBIC CORE OF T4 LYSOZYME


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.9 Å

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozyme.

Dao-pin, S.Anderson, D.E.Baase, W.A.Dahlquist, F.W.Matthews, B.W.

(1991) Biochemistry 30: 11521-11529


  • PubMed Abstract: 
  • To determine the energetic and structural consequences of placing a charged group within the core of a protein, two "buried charge" mutants, Met 102----Lys (M102K) and Leu 133----Asp (L133D) were constructed in phage T4 lysozyme. Both proteins fold a ...

    To determine the energetic and structural consequences of placing a charged group within the core of a protein, two "buried charge" mutants, Met 102----Lys (M102K) and Leu 133----Asp (L133D) were constructed in phage T4 lysozyme. Both proteins fold at neutral pH, although they are substantially less stable than wild type. The activity of M102K is about 35% that of wild type, while that of L133D is about 4%. M102K could be crystallized, and its structure was determined at high resolution. The crystal structure (at pH 6.8) of the mutant is very similar to that of wild type except for the alpha-helix that includes residues 108-113. In wild-type lysozyme, one side of this helix is exposed to solvent and the other contacts Met 102. In the M102K structure this alpha-helix becomes much more mobile, possibly allowing partial access of Lys 102 to solvent. The stability of M102K, determined by monitoring the unfolding of the protein with CD, is pH-dependent, consistent with the charged form of the substituted amino acid being more destabilizing than the uncharged form. The pKa of Lys 102 was estimated to be 6.5 both by differential titration and also by NMR analysis of isotopically labeled protein with 13C incorporated at the C epsilon position of all lysines. As the pH is lowered below pH 6.5, the overall three-dimensional structure of M102K at room temperature appears to be maintained to pH 3 or so, although there is evidence for some structural adjustment possibly allowing solvent accessibility to the protonated form of Lys 102.


    Related Citations: 
    • Structural Analysis of the Temperature-Sensitive Mutant of Bacteriophage T4 Lysozyme, Glycine 156 (Right Arrow) Aspartic Acid
      Gray, T.M.,Matthews, B.W.
      (1987) J.Biol.Chem. 262: 16858
    • Crystallographic Determination of the Mode of Binding of Oligosaccharides to T4 Bacteriophage Lysozyme. Implications for the Mechanism of Catalysis
      Anderson, W.F.,Gruetter, M.G.,Remington, S.J.,Weaver, L.H.,Matthews, B.W.
      (1981) J.Mol.Biol. 147: 523
    • Enhanced Protein Thermostability from Site-Directed Mutations that Decrease the Entropy of Unfolding
      Matthews, B.W.,Nicholson, H.,Becktel, W.J.
      (1987) Proc.Natl.Acad.Sci.USA 84: 6663
    • Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme
      Matthews, B.W.
      (1975) Biochim.Biophys.Acta 405: 442
    • Structure of the Lysozyme from Bacteriophage T4, an Electron Density Map at 2.4 Angstroms Resolution
      Remington, S.J.,Anderson, W.F.,Owen, J.,Teneyck, L.F.,Grainger, C.T.,Matthews, B.W.
      (1978) J.Mol.Biol. 118: 81
    • Structural Studies of Mutants of T4 Lysozyme that Alter Hydrophobic Stabilization
      Matsumura, M.,Wozniak, J.A.,Dao-Pin, S.,Matthews, B.W.
      (1989) J.Biol.Chem. 264: 16059
    • Temperature-Sensitive Mutations of Bacteriophage T4 Lysozyme Occur at Sites with Low Mobility and Low Solvent Accessibility in the Folded Protein
      Alber, T.,Dao-Pin, S.,Nye, J.A.,Muchmore, D.C.,Matthews, B.W.
      (1987) Biochemistry 26: 3754
    • Hydrophobic Stabilization in T4 Lysozyme Determined Directly by Multiple Substitutions of Ile 3
      Matsumura, M.,Becktel, W.J.,Matthews, B.W.
      (1988) Nature 334: 406
    • Tolerance of T4 Lysozyme to Proline Substitutions within the Long Interdomain Alpha-Helix Illustrates the Adaptability of Proteins to Potentially Destabilizing Lesions
      Sauer, U.H.,Dao-Pin, S.,Matthews, B.W.
      () TO BE PUBLISHED --: --
    • Common Precursor of Lysozymes of Hen Egg-White and Bacteriophage T4
      Matthews, B.W.,Gruetter, M.G.,Anderson, W.F.,Remington, S.J.
      (1981) Nature 290: 334
    • Structural Studies of Mutants of the Lysozyme of Bacteriophage T4. The Temperature-Sensitive Mutant Protein Thr157 (Right Arrow) Ile
      Gruetter, M.G.,Gray, T.M.,Weaver, L.H.,Alber, T.,Wilson, K.,Matthews, B.W.
      (1987) J.Mol.Biol. 197: 315
    • High-Resolution Structure of the Temperature-Sensitive Mutant of Phage Lysozyme, Arg 96 (Right Arrow) His
      Weaver, L.H.,Gray, T.M.,Gruetter, M.G.,Anderson, D.E.,Wozniak, J.A.,Dahlquist, F.W.,Matthews, B.W.
      (1989) Biochemistry 28: 3793
    • Structure of a Thermostable Disulfide-Bridge Mutant of Phage T4 Lysozyme Shows that an Engineered Crosslink in a Flexible Region Does not Increase the Rigidity of the Folded Protein
      Pjura, P.E.,Matsumura, M.,Wozniak, J.A.,Matthews, B.W.
      (1990) Biochemistry 29: 2592
    • Toward a Simplification of the Protein Folding Problem: A Stabilizing Polyalanine Alpha-Helix Engineered in T4 Lysozyme
      Zhang, X.-J.,Baase, W.A.,Matthews, B.W.
      (1991) Biochemistry 30: 2012
    • Contributions of Left-Handed Helical Residues to the Structure and Stability of Bacteriophage T4 Lysozyme
      Nicholson, H.,Soderlind, E.,Tronrud, D.E.,Matthews, B.W.
      (1989) J.Mol.Biol. 210: 181
    • Nicholson, H.,Becktel, W.,Matthews, B.W.
      () TO BE PUBLISHED --: --
    • Analysis of the Interaction between Charged Side Chains and the Alpha-Helix Dipole Using Designed Thermostable Mutants of Phage T4 Lysozyme
      Nicholson, H.,Anderson, D.E.,Dao-Pin, S.,Matthews, B.W.
      (1991) Biochemistry 30: 9816
    • Enhanced Protein Thermostability from Designed Mutations that Interact with Alpha-Helix Dipoles
      Nicholson, H.,Becktel, W.J.,Matthews, B.W.
      (1988) Nature 336: 651
    • Tolerance of T4 Lysozyme to Multiple Xaa (Right Arrow) Ala Substitutions: A Polyalanine Alpha-Helix Containing Ten Consecutive Alanines
      Heinz, D.W.,Baase, W.A.,Matthews, B.W.
      () TO BE PUBLISHED --: --
    • The Three Dimensional Structure of the Lysozyme from Bacteriophage T4
      Matthews, B.W.,Remington, S.J.
      (1974) Proc.Natl.Acad.Sci.USA 71: 4178
    • Contributions of Hydrogen Bonds of Thr 157 to the Thermodynamic Stability of Phage T4 Lysozyme
      Alber, T.,Dao-Pin, S.,Wilson, K.,Wozniak, J.A.,Cook, S.P.,Matthews, B.W.
      (1987) Nature 330: 41
    • Structural and Thermodynamic Analysis of the Packing of Two Alpha-Helices in Bacteriophage T4 Lysozyme
      Daopin, S.,Alber, T.,Baase, W.A.,Wozniak, J.A.,Matthews, B.W.
      (1991) J.Mol.Biol. 221: 647
    • Replacements of Pro86 in Phage T4 Lysozyme Extend an Alpha-Helix But Do not Alter Protein Stability
      Alber, T.,Bell, J.A.,Dao-Pin, S.,Nicholson, H.,Cook, J.A.Wozniak S.,Matthews, B.W.
      (1988) Science 239: 631
    • Crystallographic Data for Lysozyme from Bacteriophage T4
      Matthews, B.W.,Dahlquist, F.W.,Maynard, A.Y.
      (1973) J.Mol.Biol. 78: 575
    • Contributions of Engineered Surface Salt Bridges to the Stability of T4 Lysozyme Determined by Directed Mutagenesis
      Dao-Pin, S.,Sauer, U.,Nicholson, H.,Matthews, B.W.
      (1991) Biochemistry 30: 7142
    • Cumulative Site-Directed Charge-Change Replacements in Bacteriophage T4 Lysozyme Suggest that Long-Range Electrostatic Interactions Contribute Little to Protein Stability
      Dao-Pin, S.,Soderlind, E.,Baase, W.A.,Wozniak, J.A.,Sauer, U.,Matthews, B.W.
      (1991) J.Mol.Biol. 221: 873
    • Structure of Bacteriophage T4 Lysozyme Refined at 1.7 Angstroms Resolution
      Weaver, L.H.,Matthews, B.W.
      (1987) J.Mol.Biol. 193: 189
    • Atomic Coordinates for T4 Phage Lysozyme
      Remington, S.J.,Teneyck, L.F.,Matthews, B.W.
      (1977) Biochem.Biophys.Res.Commun. 75: 265
    • Multiple Stabilizing Alanine Replacements within Alpha-Helix 126-134 of T4 Lysozyme Have Independent, Additive Effects on Both Structure and Stability
      Zhang, X.-J.,Baase, W.A.,Matthews, B.W.
      () TO BE PUBLISHED --: --
    • Relation between Hen Egg White Lysozyme and Bacteriophage T4 Lysozyme. Evolutionary Implications
      Matthews, B.W.,Remington, S.J.,Gruetter, M.G.,Anderson, W.F.
      (1981) J.Mol.Biol. 147: 545


    Organizational Affiliation

    Institute of Molecular Biology, Howard Hughes Medical Institute, Eugene, Oregon.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
T4 LYSOZYME
A
164Enterobacteria phage T4Gene Names: E
EC: 3.2.1.17
Find proteins for P00720 (Enterobacteria phage T4)
Go to UniProtKB:  P00720
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.9 Å
  • Space Group: P 32 2 1
Unit Cell:
Length (Å)Angle (°)
a = 61.000α = 90.00
b = 61.000β = 90.00
c = 96.400γ = 120.00
Software Package:
Software NamePurpose
TNTrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1991-10-15
    Type: Initial release
  • Version 1.1: 2008-03-24
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Advisory, Version format compliance
  • Version 1.3: 2017-11-29
    Type: Derived calculations, Other