1BYQ

HSP90 N-TERMINAL DOMAIN BOUND TO ADP-MG


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.5 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.189 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis.

Obermann, W.M.Sondermann, H.Russo, A.A.Pavletich, N.P.Hartl, F.U.

(1998) J.Cell Biol. 143: 901-910


  • PubMed Abstract: 
  • Heat shock protein 90 (Hsp90), an abundant molecular chaperone in the eukaryotic cytosol, is involved in the folding of a set of cell regulatory proteins and in the re-folding of stress-denatured polypeptides. The basic mechanism of action of Hsp90 i ...

    Heat shock protein 90 (Hsp90), an abundant molecular chaperone in the eukaryotic cytosol, is involved in the folding of a set of cell regulatory proteins and in the re-folding of stress-denatured polypeptides. The basic mechanism of action of Hsp90 is not yet understood. In particular, it has been debated whether Hsp90 function is ATP dependent. A recent crystal structure of the NH2-terminal domain of yeast Hsp90 established the presence of a conserved nucleotide binding site that is identical with the binding site of geldanamycin, a specific inhibitor of Hsp90. The functional significance of nucleotide binding by Hsp90 has remained unclear. Here we present evidence for a slow but clearly detectable ATPase activity in purified Hsp90. Based on a new crystal structure of the NH2-terminal domain of human Hsp90 with bound ADP-Mg and on the structural homology of this domain with the ATPase domain of Escherichia coli DNA gyrase, the residues of Hsp90 critical in ATP binding (D93) and ATP hydrolysis (E47) were identified. The corresponding mutations were made in the yeast Hsp90 homologue, Hsp82, and tested for their ability to functionally replace wild-type Hsp82. Our results show that both ATP binding and hydrolysis are required for Hsp82 function in vivo. The mutant Hsp90 proteins tested are defective in the binding and ATP hydrolysis-dependent cycling of the co-chaperone p23, which is thought to regulate the binding and release of substrate polypeptide from Hsp90. Remarkably, the complete Hsp90 protein is required for ATPase activity and for the interaction with p23, suggesting an intricate allosteric communication between the domains of the Hsp90 dimer. Our results establish Hsp90 as an ATP-dependent chaperone.


    Organizational Affiliation

    Department of Cellular Biochemistry, Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
PROTEIN (HEAT SHOCK PROTEIN 90)
A
228Homo sapiensMutation(s): 0 
Gene Names: HSP90AA1 (HSP90A, HSPC1, HSPCA)
Find proteins for P07900 (Homo sapiens)
Go to Gene View: HSP90AA1
Go to UniProtKB:  P07900
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ADP
Query on ADP

Download SDF File 
Download CCD File 
A
ADENOSINE-5'-DIPHOSPHATE
C10 H15 N5 O10 P2
XTWYTFMLZFPYCI-KQYNXXCUSA-N
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.5 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.189 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 53.140α = 90.00
b = 42.500β = 115.53
c = 53.960γ = 90.00
Software Package:
Software NamePurpose
X-PLORrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 1998-10-28
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance