1BUP

T13S MUTANT OF BOVINE 70 KILODALTON HEAT SHOCK PROTEIN


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.220 
  • R-Value Work: 0.189 
  • R-Value Observed: 0.189 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

The hydroxyl of threonine 13 of the bovine 70-kDa heat shock cognate protein is essential for transducing the ATP-induced conformational change.

Sousa, M.C.McKay, D.B.

(1998) Biochemistry 37: 15392-15399

  • DOI: 10.1021/bi981510x
  • Primary Citation of Related Structures:  
    2BUP, 1BUP

  • PubMed Abstract: 
  • The mechanism by which ATP binding transduces a conformational change in 70-kDa heat shock proteins that results in release of bound peptides remains obscure. Wei and Hendershot demonstrated that mutating Thr37 of hamster BiP to glycine impeded the ATP-induced conformational change, as monitored by proteolysis [(1995) J ...

    The mechanism by which ATP binding transduces a conformational change in 70-kDa heat shock proteins that results in release of bound peptides remains obscure. Wei and Hendershot demonstrated that mutating Thr37 of hamster BiP to glycine impeded the ATP-induced conformational change, as monitored by proteolysis [(1995) J. Biol. Chem. 270, 26670-26676]. We have mutated the equivalent resitude of the bovine heat shock cognate protein (Hsc70), Thr13, to serine, valine, and glycine. Solution small-angle X-ray scattering experiments on a 60-kDa fragment of Hsc70 show that ATP binding induces a conformational change in the T13S mutant but not the T13V or T13G mutants. The kinetics of ATP-induced tryptophan fluorescence intensity changes in the 60-kDa proteins is biphasic for the T13S mutant but monophasic for T13V or T13G, consistent with a conformational change following initial ATP binding in the T13S mutant but not the other two. Crystallographic structures of the ATPase fragments of the T13S and T13G mutants at 1.7 A resolution show that the mutations do not disrupt the ATP binding site and that the serine hydroxyl mimics the threonine hydroxyl in the wild-type structure. We conclude that the hydroxyl of Thr13 is essential for coupling ATP binding to a conformational change in Hsc70. Molecular modeling suggests this may result from the threonine hydroxyl hydrogen-bonding to a gamma-phosphate oxygen of ATP, thereby inducing a structural shift within the ATPase domain that couples to its interactions with the peptide binding domain.


    Related Citations: 
    • Structural Basis of the 70-Kilodalton Heat Shock Cognate Protein ATP Hydrolytic Activity
      Flaherty, K.M., Wilbanks, S.M., Deluca-Flaherty, C., Mckay, D.B.
      (1994) J Biol Chem 269: 12899
    • Three-Dimensional Structure of the ATPase Fragment of a 70K Heat-Shock Cognate Protein
      Flaherty, K.M., Deluca-Flaherty, C., Mckay, D.B.
      (1990) Nature 346: 623

    Organizational Affiliation

    Beckman Laboratories for Structural Biology, Department of Structural Biology, Stanford University School of Medicine, California 94305-5400, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
PROTEIN (70 KILODALTON HEAT SHOCK PROTEIN)A386Bos taurusMutation(s): 1 
Gene Names: HSPA8HSC70
UniProt
Find proteins for P19120 (Bos taurus)
Explore P19120 
Go to UniProtKB:  P19120
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 5 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ADP
Query on ADP

Download Ideal Coordinates CCD File 
H [auth A]ADENOSINE-5'-DIPHOSPHATE
C10 H15 N5 O10 P2
XTWYTFMLZFPYCI-KQYNXXCUSA-N
 Ligand Interaction
PO4
Query on PO4

Download Ideal Coordinates CCD File 
G [auth A]PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
 Ligand Interaction
K
Query on K

Download Ideal Coordinates CCD File 
C [auth A], D [auth A]POTASSIUM ION
K
NPYPAHLBTDXSSS-UHFFFAOYSA-N
 Ligand Interaction
CL
Query on CL

Download Ideal Coordinates CCD File 
E [auth A], F [auth A]CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
MG
Query on MG

Download Ideal Coordinates CCD File 
B [auth A]MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.220 
  • R-Value Work: 0.189 
  • R-Value Observed: 0.189 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 143.572α = 90
b = 64.164β = 90
c = 46.236γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-09-09
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance