8ETX | pdb_00008etx

Ancestral PETase 55_547


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 
    0.194 (Depositor), 0.200 (DCC) 
  • R-Value Work: 
    0.166 (Depositor), 0.170 (DCC) 
  • R-Value Observed: 
    0.167 (Depositor) 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Ancestral reconstruction of polyethylene terephthalate degrading cutinases reveals a rugged and unexplored sequence-fitness landscape.

Vongsouthi, V.Georgelin, R.Matthews, D.S.Saunders, J.Lee, B.M.Ton, J.Damry, A.M.Frkic, R.L.Spence, M.A.Jackson, C.J.

(2025) Sci Adv 11: eads8318-eads8318

  • DOI: https://doi.org/10.1126/sciadv.ads8318
  • Primary Citation of Related Structures:  
    8ETX, 8ETY

  • PubMed Abstract: 

    The use of protein engineering to generate enzymes for the degradation of polyethylene terephthalate (PET) is a promising route for plastic recycling, yet traditional engineering approaches often fail to explore protein sequence space for optimal enzymes. In this work, we use multiplexed ancestral sequence reconstruction (mASR) to address this, exploring the evolutionary sequence space of PET-degrading cutinases. Using 20 statistically equivalent phylogenies of the bacterial cutinase family, we generated 48 ancestral sequences revealing a wide range of PETase activities, highlighting the value of mASR in uncovering functional variants. Our findings show PETase activity can evolve through multiple pathways involving mutations remote from the active site. Moreover, analyzing the PETase fitness landscape with local ancestral sequence embedding (LASE) revealed that LASE can capture sequence features linked to PETase activity. This work highlights mASR's potential in exploration of sequence space and underscores the use of LASE in readily mapping the protein fitness landscapes.


  • Organizational Affiliation
    • Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.

Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Polyethylene terephthalate hydrolase281synthetic constructMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 5 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
PG4
Query on PG4

Download Ideal Coordinates CCD File 
C [auth A]TETRAETHYLENE GLYCOL
C8 H18 O5
UWHCKJMYHZGTIT-UHFFFAOYSA-N
SO4
Query on SO4

Download Ideal Coordinates CCD File 
E [auth A],
H [auth A]
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
EDO
Query on EDO

Download Ideal Coordinates CCD File 
D [auth A],
F [auth A]
1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
CL
Query on CL

Download Ideal Coordinates CCD File 
I [auth A]CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
NA
Query on NA

Download Ideal Coordinates CCD File 
B [auth A],
G [auth A]
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free:  0.194 (Depositor), 0.200 (DCC) 
  • R-Value Work:  0.166 (Depositor), 0.170 (DCC) 
  • R-Value Observed: 0.167 (Depositor) 
Space Group: C 2 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 70.166α = 90
b = 150.574β = 90
c = 55.691γ = 90
Software Package:
Software NamePurpose
Aimlessdata scaling
PHENIXrefinement
PDB_EXTRACTdata extraction
XDSdata reduction
PHASERphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Not funded--

Revision History  (Full details and data files)

  • Version 1.0: 2023-11-01
    Type: Initial release
  • Version 1.1: 2024-11-06
    Changes: Structure summary
  • Version 1.2: 2025-06-04
    Changes: Database references