7V4R

The crystal structure of KFDV NS3H bound with Pi


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.224 
  • R-Value Observed: 0.227 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Kyasanur Forest disease virus NS3 helicase: Insights into structure, activity, and inhibitors.

Zhang, C.Li, Y.Samad, A.He, H.Ma, H.Chen, Y.Jin, T.

(2023) Int J Biol Macromol : 127856-127856

  • DOI: https://doi.org/10.1016/j.ijbiomac.2023.127856
  • Primary Citation of Related Structures:  
    7V4Q, 7V4R

  • PubMed Abstract: 

    Kyasanur Forest disease virus (KFDV), a tick-borne flavivirus prevalent in India, presents a serious threat to human health. KFDV NS3 helicase (NS3hel) is considered a potential drug target due to its involvement in the viral replication complex. Here, we resolved the crystal structures of KFDV NS3hel apo and its complex with three phosphate molecules, which indicates a conformational switch during ATP hydrolysis. Our data revealed that KFDV NS3hel has a higher binding affinity for dsRNA, and its intrinsic ATPase activity was enhanced by dsRNA while being inhibited by DNA. Through mutagenesis analysis, several residues within motifs I, Ia, III, V, and VI were identified to be crucial for NS3hel ATPase activity. Notably, the M419A mutation drastically reduced NS3hel ATPase activity. We propose that the methionine-aromatic interaction between residues M419 and W294, located on the surface of the RNA-binding channel, could be a target for the design of efficient inhibitor probes. Moreover, epigallocatechin gallate (EGCG), a tea-derived polyphenol, strongly inhibited NS3hel ATPase activity with an IC 50 value of 0.8 μM. Our computational docking data show that EGCG binds at the predicted druggable hotspots of NS3hel. Overall, these findings contribute to the development and design of more effective and specific inhibitors.


  • Organizational Affiliation

    Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China. Electronic address: caiyingz@mail.ustc.edu.cn.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Serine protease NS3446Kyasanur Forest disease virusMutation(s): 0 
EC: 3.4.21.91 (PDB Primary Data), 3.6.1.15 (PDB Primary Data), 3.6.4.13 (PDB Primary Data)
UniProt
Find proteins for D7RF80 (Kyasanur forest disease virus)
Explore D7RF80 
Go to UniProtKB:  D7RF80
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupD7RF80
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.224 
  • R-Value Observed: 0.227 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 43.537α = 90
b = 53.091β = 90
c = 189.843γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
PDB_EXTRACTdata extraction
XDSdata reduction
XDSdata scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Not fundedChina--

Revision History  (Full details and data files)

  • Version 1.0: 2022-08-17
    Type: Initial release
  • Version 1.1: 2023-11-22
    Changes: Data collection, Database references
  • Version 1.2: 2023-11-29
    Changes: Refinement description