7RHO

Human IgG1 Fc fragment, hinge-free, expressed in E. coli


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.270 
  • R-Value Work: 0.220 
  • R-Value Observed: 0.222 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Effects of glycans and hinge on dynamics in the IgG1 Fc.

Bergonzo, C.Hoopes, J.T.Kelman, Z.Gallagher, D.T.

(2023) J Biomol Struct Dyn : 1-9

  • DOI: https://doi.org/10.1080/07391102.2023.2270749
  • Primary Citation of Related Structures:  
    7RHO

  • PubMed Abstract: 

    The crystallizable fragment (Fc) domain of immunoglobulin subclass IgG1 antibodies is engineered for a wide variety of pharmaceutical applications. Two important structural variables in Fc constructs are the hinge region connecting the Fc to the antigen binding fragments (Fab) and the glycans present in various glycoforms. These components affect receptor binding interactions that mediate immune activation. To design new antibody drugs, a robust in silico method for linking stability to structural changes is necessary. In this work, all-atom simulations were used to compare the dynamic behavior of the four structural variants arising from presence or absence of the hinge and glycans. We expressed the simplest of these constructs, the 'minimal Fc' with no hinge and no glycans, in Escherichia coli and report its crystal structure. The 'maximal Fc' that includes full hinge and G0F/G1F glycans is based on a previously reported structure, Protein Data Bank (PDB) ID: 5VGP. These, along with two intermediate structures (with only the glycans or with only the hinge) were used to independently measure the stability effects of the two structural variables using umbrella sampling simulations. Principal component analysis (PCA) was used to determine free energy effects along the Fc's dominant mode of motion. This work provides a comprehensive picture of the effects of hinge and glycans on Fc dynamics and stability.Communicated by Ramaswamy H. Sarma.


  • Organizational Affiliation

    Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, The University of Maryland, Gudelsky Way, Rockville, MD, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Fc fragment of human IgG1213Homo sapiensMutation(s): 0 
Gene Names: DKFZp686C11235
UniProt
Find proteins for Q6MZV7 (Homo sapiens)
Explore Q6MZV7 
Go to UniProtKB:  Q6MZV7
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ6MZV7
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
EPE
Query on EPE

Download Ideal Coordinates CCD File 
I [auth A],
J [auth F]
4-(2-HYDROXYETHYL)-1-PIPERAZINE ETHANESULFONIC ACID
C8 H18 N2 O4 S
JKMHFZQWWAIEOD-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.270 
  • R-Value Work: 0.220 
  • R-Value Observed: 0.222 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 52.836α = 90
b = 150.392β = 90
c = 241.432γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
Aimlessdata scaling
PDB_EXTRACTdata extraction
XDSdata reduction
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2022-11-09
    Type: Initial release
  • Version 1.1: 2023-10-18
    Changes: Data collection, Refinement description
  • Version 1.2: 2023-11-22
    Changes: Database references