7QQ8

Structure of E.coli Class 2 L-asparaginase EcAIII, mutant RDM1-8 (G206Y, R207Q, D210P, S211T)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.236 
  • R-Value Work: 0.196 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structural and biophysical studies of new L-asparaginase variants: lessons from random mutagenesis of the prototypic Escherichia coli Ntn-amidohydrolase.

Loch, J.I.Klonecka, A.Kadziolka, K.Bonarek, P.Barciszewski, J.Imiolczyk, B.Brzezinski, K.Gilski, M.Jaskolski, M.

(2022) Acta Crystallogr D Struct Biol 78: 911-926

  • DOI: https://doi.org/10.1107/S2059798322005691
  • Primary Citation of Related Structures:  
    7QQ8, 7QSF, 7QTC, 7QVR, 7QY6, 7QYM, 7QYX, 7R1G, 7R5C

  • PubMed Abstract: 

    This work reports the results of random mutagenesis of the Escherichia coli class 2 L-asparaginase EcAIII belonging to the Ntn-hydrolase family. New variants of EcAIII were studied using structural, biophysical and bioinformatic methods. Activity tests revealed that the L-asparaginase activity is abolished in all analyzed mutants with the absence of Arg207, but some of them retained the ability to undergo the autoproteolytic maturation process. The results of spectroscopic studies and the determined crystal structures showed that the EcAIII fold is flexible enough to accept different types of mutations; however, these mutations may have a diverse impact on the thermal stability of the protein. The conclusions from the experiments are grouped into six lessons focused on (i) the adaptation of the EcAIII fold to new substitutions, (ii) the role of Arg207 in EcAIII activity, (iii) a network of residues necessary for autoprocessing, (iv) the complexity of the autoprocessing reaction, (v) the conformational changes observed in enzymatically inactive variants and (vi) the cooperativity of the EcAIII dimer subunits. Additionally, the structural requirements (pre-maturation checkpoints) that are necessary for the initiation of the autocleavage of Ntn-hydrolases have been classified. The findings reported in this work provide useful hints that should be considered before planning enzyme-engineering experiments aimed at the design of proteins for therapeutic applications. This is especially important for L-asparaginases that can be utilized in leukemia therapy, as alternative therapeutics are urgently needed to circumvent the severe side effects associated with the currently used enzymes.


  • Organizational Affiliation

    Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Beta-aspartyl-peptidaseA [auth AAA],
C [auth CCC]
178Escherichia coliMutation(s): 0 
Gene Names: iaaAJJT18_14590JK375_14200
EC: 3.4.19.5
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Beta-aspartyl-peptidaseB [auth BBB],
D [auth DDD]
143Escherichia coliMutation(s): 4 
Gene Names: 
ybiKiaaAiaaA_1A6519_003716A8W81_003313ABE90_014520ACN002_0860ACN68_01690ACN81_14685ACU57_05935AM270_18905AM464_21585AML23_23425AT335_000572AUQ29_12475BANRA_01341BANRA_01555BANRA_01783BANRA_04872BB545_05440BG944_002984BHF52_24110BHS81_05055BJI68_11585BK292_21235BMT50_00465BMT91_20430BN17_06281BO068_000728BOH76_20420BON70_18240BON72_22520BON73_01295BON76_25520BON93_04325BON94_25670BON95_17475BON98_19810BTQ06_08955BUE81_13890BvCms2454_00926BvCmsHHP019_05523BvCmsKKP057_04358BvCmsKKP061_03116BvCmsKSNP073_02388BvCmsKSP011_05390BvCmsNSNP036_00638BvCmsSIP082_02366BVL39_24345C5F72_1CFS32920C5N07_02820C5Y87_11355C6B22_17135C6N50_003302C9114_12655C9160_09270CA593_24960CCS08_19790CF32_004569CN875_002453CO706_26955COD50_05845CV83915_00751D0X26_04985D3O91_06915D4V09_05900D6T60_26500D9D77_09725D9H13_07905D9H94_11600DAH18_23535DAH34_00665DAH37_00135DB282_07105DEN89_02655DEN95_11270DEO15_17945DIV22_10390DM968_05545DS732_09125DTL43_10625DXT69_18875DXT71_08810E0I42_09220E2119_12510E2127_00560E2128_05045E2129_10495E4K51_02720E4K54_01015E5S34_19335E5S35_03615E5S43_04770E5S47_20155E5S52_10740EAI46_07630EAN77_08435EAX79_16315EC3234A_14c00240EC95NR1_05101EHD79_04065EHH55_13640EI021_00645EI041_07210EIA13_17230EIZ93_05000EKI52_06310EL79_3055EL80_3016ELT21_01570ELV08_05385ELY05_10390ETECE36_04109ETECE925_03147F9V24_09900FC554_12230FOI11_009250FOI11_10795FTV92_09805FV293_02290FVB16_25145FWK02_18715FY127_05135G9448_06620GF646_11140GIB53_03275GKF86_16910GKF89_13745GNZ05_09030GP650_11285GP662_09655GP946_16590GP979_11145GQE64_04115GQF58_22125GQF59_19085GQM04_07810GQM06_12705GQM09_17025GQM10_22525GQR15_10775GRW05_01460GRW57_08990GRW81_11185GUC01_03155H4P47_16170H4P50_17220H4P51_17070HCF72_001403HHH44_001163HIE44_001059HIR12_003510HKA49_002523HmCms184_01733HMV95_02640HNC52_00665HNV65_21255HPE39_07700HVV53_24715HVW11_02200HX136_17405I6H00_09890I6H01_21700I6H02_22440JE86ST02C_09390JE86ST05C_09930NCTC10090_00399NCTC10418_05023NCTC11181_00590NCTC13216_03372NCTC4450_03859NCTC8008_02934NCTC8500_03679NCTC8622_06405NCTC8960_00506NCTC9036_03423NCTC9045_03895NCTC9073_02377NCTC9111_03436NCTC9703_02658ND22_003961PGD_02506RG28_00360SAMEA3472043_03316SAMEA3472080_01956SAMEA3484427_01111SAMEA3484429_00220SAMEA3751407_00331SAMEA3752386_00245SAMEA3753300_01714WP2S18E08_31210WP4S18E08_29890WQ89_23460WR15_25260

EC: 3.4.19.5 (PDB Primary Data), 3.5.1.1 (PDB Primary Data)
UniProt
Find proteins for J7QNS8 (Escherichia coli)
Explore J7QNS8 
Go to UniProtKB:  J7QNS8
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupJ7QNS8
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

Unit Cell:
Length ( Å )Angle ( ˚ )
a = 50.005α = 90
b = 74.885β = 90
c = 147.835γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
CrysalisProdata reduction
Aimlessdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Polish National Science CentrePoland2020/38/E/NZ1/00035

Revision History  (Full details and data files)

  • Version 1.0: 2022-07-13
    Type: Initial release
  • Version 1.1: 2024-01-31
    Changes: Data collection, Refinement description