6VLD

Crystal structure of human alpha 1,6-fucosyltransferase, FUT8 bound to GDP and A2SGP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.28 Å
  • R-Value Free: 0.224 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.193 

wwPDB Validation   3D Report Full Report

Currently 6VLD does not have a validation slider image.


This is version 2.2 of the entry. See complete history


Literature

Structural basis of substrate recognition and catalysis by fucosyltransferase 8.

Jarva, M.A.Dramicanin, M.Lingford, J.P.Mao, R.John, A.Jarman, K.E.Grinter, R.Goddard-Borger, E.D.

(2020) J Biol Chem 295: 6677-6688

  • DOI: https://doi.org/10.1074/jbc.RA120.013291
  • Primary Citation of Related Structures:  
    6VLD, 6VLE, 6VLF, 6VLG

  • PubMed Abstract: 

    Fucosylation of the innermost GlcNAc of N -glycans by fucosyltransferase 8 (FUT8) is an important step in the maturation of complex and hybrid N -glycans. This simple modification can dramatically affect the activities and half-lives of glycoproteins, effects that are relevant to understanding the invasiveness of some cancers, development of mAb therapeutics, and the etiology of a congenital glycosylation disorder. The acceptor substrate preferences of FUT8 are well-characterized and provide a framework for understanding N -glycan maturation in the Golgi; however, the structural basis of these substrate preferences and the mechanism through which catalysis is achieved remain unknown. Here we describe several structures of mouse and human FUT8 in the apo state and in complex with GDP, a mimic of the donor substrate, and with a glycopeptide acceptor substrate at 1.80-2.50 Å resolution. These structures provide insights into a unique conformational change associated with donor substrate binding, common strategies employed by fucosyltransferases to coordinate GDP, features that define acceptor substrate preferences, and a likely mechanism for enzyme catalysis. Together with molecular dynamics simulations, the structures also revealed how FUT8 dimerization plays an important role in defining the acceptor substrate-binding site. Collectively, this information significantly builds on our understanding of the core fucosylation process.


  • Organizational Affiliation

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Alpha-(1,6)-fucosyltransferaseA,
B,
C [auth G],
D [auth H]
481Homo sapiensMutation(s): 0 
Gene Names: FUT8
EC: 2.4.1.68
UniProt & NIH Common Fund Data Resources
Find proteins for Q9BYC5 (Homo sapiens)
Explore Q9BYC5 
Go to UniProtKB:  Q9BYC5
PHAROS:  Q9BYC5
GTEx:  ENSG00000033170 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9BYC5
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranoseE [auth C],
F [auth D],
G [auth E],
H [auth F]
7N-Glycosylation
Glycosylation Resources
GlyTouCan:  G39213VZ
GlyCosmos:  G39213VZ
GlyGen:  G39213VZ
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
GDP (Subject of Investigation/LOI)
Query on GDP

Download Ideal Coordinates CCD File 
J [auth A],
P [auth B]
GUANOSINE-5'-DIPHOSPHATE
C10 H15 N5 O11 P2
QGWNDRXFNXRZMB-UUOKFMHZSA-N
ASN (Subject of Investigation/LOI)
Query on ASN

Download Ideal Coordinates CCD File 
I [auth A],
O [auth B],
R [auth G],
U [auth H]
ASPARAGINE
C4 H8 N2 O3
DCXYFEDJOCDNAF-REOHCLBHSA-N
SO4
Query on SO4

Download Ideal Coordinates CCD File 
K [auth A]
L [auth A]
M [auth A]
N [auth A]
Q [auth B]
K [auth A],
L [auth A],
M [auth A],
N [auth A],
Q [auth B],
S [auth G],
T [auth G],
V [auth H],
W [auth H],
X [auth H],
Y [auth H],
Z [auth H]
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.28 Å
  • R-Value Free: 0.224 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.193 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 208.307α = 90
b = 68.453β = 111.21
c = 249.983γ = 90
Software Package:
Software NamePurpose
XDSdata reduction
Aimlessdata scaling
PHASERphasing
PHENIXrefinement
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report

Currently 6VLD does not have a validation slider image.



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Other governmentAustraliaGNT1139546

Revision History  (Full details and data files)

  • Version 1.0: 2020-02-26
    Type: Initial release
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Advisory, Atomic model, Data collection, Derived calculations, Structure summary
  • Version 2.1: 2020-09-16
    Changes: Database references, Derived calculations, Structure summary
  • Version 2.2: 2023-10-11
    Changes: Data collection, Database references, Refinement description