6B10

C. Jejuni Agmatine Deiminase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.09 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.200 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Structural and Functional Basis for Targeting Campylobacter jejuni Agmatine Deiminase To Overcome Antibiotic Resistance.

Shek, R.Dattmore, D.A.Stives, D.P.Jackson, A.L.Chatfield, C.H.Hicks, K.A.French, J.B.

(2017) Biochemistry 56: 6734-6742

  • DOI: 10.1021/acs.biochem.7b00982
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Campylobacter jejuni is the most common bacterial cause of gastroenteritis and a major contributor to infant mortality in the developing world. The increasing incidence of antibiotic-resistant C. jejuni only adds to the urgency to develop effective t ...

    Campylobacter jejuni is the most common bacterial cause of gastroenteritis and a major contributor to infant mortality in the developing world. The increasing incidence of antibiotic-resistant C. jejuni only adds to the urgency to develop effective therapies. Because of the essential role that polyamines play, particularly in protection from oxidative stress, enzymes involved in the biosynthesis of these metabolites are emerging as promising antibiotic targets. The recent description of an alternative pathway for polyamine synthesis, distinct from that in human cells, in C. jejuni suggests this pathway could be a target for novel therapies. To that end, we determined X-ray crystal structures of C. jejuni agmatine deiminase (CjADI) and demonstrated that loss of CjADI function contributes to antibiotic sensitivity, likely because of polyamine starvation. The structures provide details of key molecular features of the active site of this protein. Comparison of the unliganded structure (2.1 Å resolution) to that of the CjADI-agmatine complex (2.5 Å) reveals significant structural rearrangements that occur upon substrate binding. The shift of two helical regions of the protein and a large conformational change in a loop near the active site generate a narrow binding pocket around the bound substrate. This change optimally positions the substrate for catalysis. In addition, kinetic analysis of this enzyme demonstrates that CjADI is an iminohydrolase that effectively deiminates agmatine. Our data suggest that C. jejuni agmatine deiminase is a potentially important target for combatting antibiotic resistance, and these results provide a valuable framework for guiding future drug development.


    Organizational Affiliation

    Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794, United States.,Department of Chemistry, SUNY Cortland , Cortland, New York 13045, United States.,Department of Chemistry, Stony Brook University , Stony Brook, New York 11794, United States.,Department of Biological Sciences, SUNY Cortland , Cortland, New York 13045, United States.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Putative peptidyl-arginine deiminase family protein
A, B
333Campylobacter jejuni subsp. jejuni serotype O:2 (strain ATCC 700819 / NCTC 11168)Mutation(s): 0 
Find proteins for Q0P9V0 (Campylobacter jejuni subsp. jejuni serotype O:2 (strain ATCC 700819 / NCTC 11168))
Go to UniProtKB:  Q0P9V0
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
K
Query on K

Download SDF File 
Download CCD File 
A, B
POTASSIUM ION
K
NPYPAHLBTDXSSS-UHFFFAOYSA-N
 Ligand Interaction
PO4
Query on PO4

Download SDF File 
Download CCD File 
A, B
PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.09 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.200 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 53.400α = 90.00
b = 80.296β = 97.36
c = 83.923γ = 90.00
Software Package:
Software NamePurpose
PHASERphasing
HKL-2000data collection
REFMACrefinement
HKL-2000data scaling
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)United StatesR35GM124898

Revision History 

  • Version 1.0: 2017-12-13
    Type: Initial release
  • Version 1.1: 2018-01-03
    Type: Database references
  • Version 1.2: 2018-01-17
    Type: Author supporting evidence
  • Version 1.3: 2020-01-01
    Type: Author supporting evidence