5VR3

Crystal structure of the BRS domain of BRAF


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.224 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.210 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

MEK drives BRAF activation through allosteric control of KSR proteins.

Lavoie, H.Sahmi, M.Maisonneuve, P.Marullo, S.A.Thevakumaran, N.Jin, T.Kurinov, I.Sicheri, F.Therrien, M.

(2018) Nature 554: 549-553

  • DOI: 10.1038/nature25478
  • Primary Citation of Related Structures:  
    5VYK, 5VR3

  • PubMed Abstract: 
  • RAF family kinases have prominent roles in cancer. Their activation is dependent on dimerization of their kinase domains, which has emerged as a hindrance for drug development. In mammals, RAF family kinases include three catalytically competent enzy ...

    RAF family kinases have prominent roles in cancer. Their activation is dependent on dimerization of their kinase domains, which has emerged as a hindrance for drug development. In mammals, RAF family kinases include three catalytically competent enzymes (ARAF, BRAF and CRAF) and two pseudokinases (KSR1 and KSR2) that have been described as scaffolds owing to their apparent ability to bridge RAF isoforms and their substrate, mitogen-activated protein kinase kinase (MEK). Kinase suppressor of Ras (KSR) pseudokinases were also shown to dimerize with kinase-competent RAFs to stimulate catalysis allosterically. Although GTP-bound RAS can modulate the dimerization of RAF isoforms by engaging their RAS-binding domains, KSR1 and KSR2 lack an RAS-binding domain and therefore the regulatory principles underlying their dimerization with other RAF family members remain unknown. Here we show that the selective heterodimerization of BRAF with KSR1 is specified by direct contacts between the amino-terminal regulatory regions of each protein, comprising in part a novel domain called BRS in BRAF and the coiled-coil-sterile α motif (CC-SAM) domain in KSR1. We also discovered that MEK binding to the kinase domain of KSR1 asymmetrically drives BRAF-KSR1 heterodimerization, resulting in the concomitant stimulation of BRAF catalytic activity towards free MEK molecules. These findings demonstrate that KSR-MEK complexes allosterically activate BRAF through the action of N-terminal regulatory region and kinase domain contacts and challenge the accepted role of KSR as a scaffold for MEK recruitment to RAF.


    Organizational Affiliation

    Département de pathologie et biologie cellulaire, Université de Montréal, Québec H3C 3J7, Canada.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
BRAFA88Homo sapiensMutation(s): 0 
Gene Names: BRAFBRAF1RAFB1
EC: 2.7.11.1
Find proteins for P15056 (Homo sapiens)
Explore P15056 
Go to UniProtKB:  P15056
NIH Common Fund Data Resources
PHAROS  P15056
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download CCD File 
A
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.224 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.210 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 41.563α = 90
b = 41.563β = 90
c = 98.855γ = 120
Software Package:
Software NamePurpose
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling
Arcimboldophasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2018-02-14
    Type: Initial release
  • Version 1.1: 2018-02-28
    Changes: Database references
  • Version 1.2: 2018-03-07
    Changes: Database references