5UFF

Crystal Structure of Variable Lymphocyte Receptor (VLR) RBC36 with Fucose(alpha-1-2)Lactose bound


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.137 Å
  • R-Value Free: 0.282 
  • R-Value Work: 0.223 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Structural Insights into VLR Fine Specificity for Blood Group Carbohydrates.

Collins, B.C.Gunn, R.J.McKitrick, T.R.Cummings, R.D.Cooper, M.D.Herrin, B.R.Wilson, I.A.

(2017) Structure 25: 1667-1678.e4

  • DOI: 10.1016/j.str.2017.09.003
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • High-quality reagents to study and detect glycans with high specificity for research and clinical applications are severely lacking. Here, we structurally and functionally characterize several variable lymphocyte receptor (VLR)-based antibodies from ...

    High-quality reagents to study and detect glycans with high specificity for research and clinical applications are severely lacking. Here, we structurally and functionally characterize several variable lymphocyte receptor (VLR)-based antibodies from lampreys immunized with O erythrocytes that specifically recognize the blood group H-trisaccharide type II antigen. Glycan microarray analysis and biophysical data reveal that these VLRs exhibit greater specificity for H-trisaccharide compared with the plant lectin UEA-1, which is widely used in blood typing. Among these antibodies, O13 exhibits superior specificity for H-trisaccharide, the basis for which is revealed by comparative analysis of high-resolution VLR:glycan crystal structures. Using a structure-guided approach, we designed an O13 mutant with further enhanced specificity for H-trisaccharide. These insights into glycan recognition by VLRs suggest that lampreys can produce highly specific glycan antibodies, and are a valuable resource for the production of next-generation glycan reagents for biological and biomedical research and as diagnostics and therapeutics.


    Organizational Affiliation

    Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
RBC36
A
216N/AMutation(s): 0 
Protein Feature View is not available: No corresponding UniProt sequence found.
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
8B7
Query on 8B7

Download SDF File 
Download CCD File 
A
6-deoxy-alpha-L-galactopyranosyl-(1->2)-beta-D-galactopyranosyl-(1->4)-beta-D-glucopyranose
C18 H32 O15
SNFSYLYCDAVZGP-OHWKOEMOSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.137 Å
  • R-Value Free: 0.282 
  • R-Value Work: 0.223 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 39.969α = 90.00
b = 47.503β = 85.69
c = 57.276γ = 90.00
Software Package:
Software NamePurpose
PHASERphasing
XDSdata reduction
XDSdata scaling
PDB_EXTRACTdata extraction
PHENIXrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute Of Allergy and Infectious DiseasesUnited States--

Revision History 

  • Version 1.0: 2017-10-18
    Type: Initial release
  • Version 1.1: 2017-11-22
    Type: Database references