5TBY

HUMAN BETA CARDIAC HEAVY MEROMYOSIN INTERACTING-HEADS MOTIF OBTAINED BY HOMOLOGY MODELING (USING SWISS-MODEL) OF HUMAN SEQUENCE FROM APHONOPELMA HOMOLOGY MODEL (PDB-3JBH), RIGIDLY FITTED TO HUMAN BETA-CARDIAC NEGATIVELY STAINED THICK FILAMENT 3D-RECONSTRUCTION (EMD-2240)

  • Classification: CONTRACTILE PROTEIN
  • Organism(s): Homo sapiens

  • Deposited: 2016-09-13 Released: 2017-06-07 
  • Deposition Author(s): ALAMO, L., WARE, J.S., PINTO, A., GILLILAN, R.E., SEIDMAN, J.G., SEIDMAN, C.E., PADRON, R.
  • Funding Organization(s): Howard Hughes Medical Institute; Leducq Foundation; Wellcome Trust; National Institutes of Health/National Heart, Lung, and Blood Institute; National Science Foundation (United States); National Institutes of Health/National Institute of General Medical Sciences; Medical Research Council (United Kingdom) 

Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 20 Å
  • Aggregation State: FILAMENT 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation 3D Report Full Report


This is version 1.6 of the entry. See complete history

Literature

Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes.

Alamo, L.Ware, J.S.Pinto, A.Gillilan, R.E.Seidman, J.G.Seidman, C.E.Padron, R.

(2017) Elife 6: --

  • DOI: 10.7554/eLife.24634

  • PubMed Abstract: 
  • Cardiac β-myosin variants cause hypertrophic (HCM) or dilated (DCM) cardiomyopathy by disrupting sarcomere contraction and relaxation. The locations of variants on isolated myosin head structures predict contractility effects but not the prominent re ...

    Cardiac β-myosin variants cause hypertrophic (HCM) or dilated (DCM) cardiomyopathy by disrupting sarcomere contraction and relaxation. The locations of variants on isolated myosin head structures predict contractility effects but not the prominent relaxation and energetic deficits that characterize HCM. During relaxation, pairs of myosins form interacting-heads motif (IHM) structures that with other sarcomere proteins establish an energy-saving, super-relaxed (SRX) state. Using a human β-cardiac myosin IHM quasi-atomic model, we defined interactions sites between adjacent myosin heads and associated protein partners, and then analyzed rare variants from 6112 HCM and 1315 DCM patients and 33,370 ExAC controls. HCM variants, 72% that changed electrostatic charges, disproportionately altered IHM interaction residues (expected 23%; HCM 54%, p=2.6×10-19; DCM 26%, p=0.66; controls 20%, p=0.23). HCM variant locations predict impaired IHM formation and stability, and attenuation of the SRX state - accounting for altered contractility, reduced diastolic relaxation, and increased energy consumption, that fully characterizes HCM pathogenesis.


    Related Citations: 
    • SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling.
      Guex, N.,Peitsch, M.C.
      (1997) Electrophoresis 18: 2714
    • Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis.
      Alamo, L.,Qi, D.,Wriggers, W.,Pinto, A.,Zhu, J.,Bilbao, A.,Gillilan, R.E.,Hu, S.,Padron, R.
      (2016) J. Mol. Biol. 428: 1142
    • Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity.
      Alamo, L.,Wriggers, W.,Pinto, A.,Bartoli, F.,Salazar, L.,Zhao, F.Q.,Craig, R.,Padron, R.
      (2008) J. Mol. Biol. 384: 780
    • Atomic model of the human cardiac muscle myosin filament.
      Al-Khayat, H.A.,Kensler, R.W.,Squire, J.M.,Marston, S.B.,Morris, E.P.
      (2013) Proc. Natl. Acad. Sci. U.S.A. 110: 318
    • The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling.
      Arnold, K.,Bordoli, L.,Kopp, J.,Schwede, T.
      (2006) Bioinformatics 22: 195
    • SWISS-MODEL: An automated protein homology-modeling server.
      Schwede, T.,Kopp, J.,Guex, N.,Peitsch, M.C.
      (2003) Nucleic Acids Res. 31: 3381
    • Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis.
      Alamo, L.,Qi, D.,Wriggers, W.,Pinto, A.,Zhu, J.,Bilbao, A.,Gillilan, R.E.,Hu, S.,Padron, R.
      (2016) J. Mol. Biol. 428: 1142


    Organizational Affiliation

    Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Myosin-7
A, B
1935Homo sapiensMutation(s): 0 
Gene Names: MYH7 (MYHCB)
Find proteins for P12883 (Homo sapiens)
Go to Gene View: MYH7
Go to UniProtKB:  P12883
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Myosin light chain 3
C, D
195Homo sapiensMutation(s): 0 
Gene Names: MYL3
Find proteins for P08590 (Homo sapiens)
Go to Gene View: MYL3
Go to UniProtKB:  P08590
Entity ID: 3
MoleculeChainsSequence LengthOrganismDetails
Myosin regulatory light chain 2, ventricular/cardiac muscle isoform
E, F
166Homo sapiensMutation(s): 0 
Gene Names: MYL2 (MLC2)
Find proteins for P10916 (Homo sapiens)
Go to Gene View: MYL2
Go to UniProtKB:  P10916
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 20 Å
  • Aggregation State: FILAMENT 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Howard Hughes Medical InstituteUnited States--
Leducq FoundationFrance--
Wellcome TrustUnited States--
National Institutes of Health/National Heart, Lung, and Blood InstituteUnited StatesNHLBI-HL084553
National Science Foundation (United States)United StatesDMR-1332208
National Institutes of Health/National Institute of General Medical SciencesUnited StatesGM-103485
Medical Research Council (United Kingdom)United Kingdom--

Revision History 

  • Version 1.0: 2017-06-07
    Type: Initial release
  • Version 1.1: 2017-06-28
    Type: Database references
  • Version 1.2: 2017-08-09
    Type: Database references
  • Version 1.3: 2017-09-20
    Type: Author supporting evidence
  • Version 1.4: 2017-11-08
    Type: Derived calculations
  • Version 1.5: 2018-07-18
    Type: Data collection
  • Version 1.6: 2018-10-03
    Type: Data collection, Refinement description