5MR2

Crystal structure of red abalone VERL repeat 2 with linker at 2.5 A resolution


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.280 
  • R-Value Work: 0.234 
  • R-Value Observed: 0.239 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structural Basis of Egg Coat-Sperm Recognition at Fertilization.

Raj, I.Sadat Al Hosseini, H.Dioguardi, E.Nishimura, K.Han, L.Villa, A.de Sanctis, D.Jovine, L.

(2017) Cell 169: 1315-1326.e17

  • DOI: 10.1016/j.cell.2017.05.033
  • Primary Citation of Related Structures:  
    5MR3, 5MR2, 5II4, 5IIB, 5IIA, 5IIC, 5II6, 5II5, 5II8, 5II7

  • PubMed Abstract: 
  • Recognition between sperm and the egg surface marks the beginning of life in all sexually reproducing organisms. This fundamental biological event depends on the species-specific interaction between rapidly evolving counterpart molecules on the gamet ...

    Recognition between sperm and the egg surface marks the beginning of life in all sexually reproducing organisms. This fundamental biological event depends on the species-specific interaction between rapidly evolving counterpart molecules on the gametes. We report biochemical, crystallographic, and mutational studies of domain repeats 1-3 of invertebrate egg coat protein VERL and their interaction with cognate sperm protein lysin. VERL repeats fold like the functionally essential N-terminal repeat of mammalian sperm receptor ZP2, whose structure is also described here. Whereas sequence-divergent repeat 1 does not bind lysin, repeat 3 binds it non-species specifically via a high-affinity, largely hydrophobic interface. Due to its intermediate binding affinity, repeat 2 selectively interacts with lysin from the same species. Exposure of a highly positively charged surface of VERL-bound lysin suggests that complex formation both disrupts the organization of egg coat filaments and triggers their electrostatic repulsion, thereby opening a hole for sperm penetration and fusion.


    Related Citations: 
    • The molecular basis of sex: linking yeast to human.
      Swanson, W.J., Aagaard, J.E., Vacquier, V.D., Monne, M., Sadat Al Hosseini, H., Jovine, L.
      (2011) Mol Biol Evol 28: 1963
    • Rapidly evolving zona pellucida domain proteins are a major component of the vitelline envelope of abalone eggs.
      Aagaard, J.E., Yi, X., MacCoss, M.J., Swanson, W.J.
      (2006) Proc Natl Acad Sci U S A 103: 17302
    • Full-length sequence of VERL, the egg vitelline envelope receptor for abalone sperm lysin.
      Galindo, B.E., Moy, G.W., Swanson, W.J., Vacquier, V.D.
      (2002) Gene 288: 111
    • The abalone egg vitelline envelope receptor for sperm lysin is a giant multivalent molecule.
      Swanson, W.J., Vacquier, V.D.
      (1997) Proc Natl Acad Sci U S A 94: 6724

    Organizational Affiliation

    Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge, SE-141 83, Sweden. Electronic address: luca.jovine@ki.se.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Vitelline envelope sperm lysin receptorA, B, C134Haliotis rufescensMutation(s): 3 
Gene Names: VERL
Find proteins for Q8WR62 (Haliotis rufescens)
Explore Q8WR62 
Go to UniProtKB:  Q8WR62
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NAG
Query on NAG

Download CCD File 
A, B, C
2-acetamido-2-deoxy-beta-D-glucopyranose
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.280 
  • R-Value Work: 0.234 
  • R-Value Observed: 0.239 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 69.92α = 90
b = 79.19β = 102.62
c = 81.24γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
XDSdata scaling
PHASERphasing
Cootmodel building

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Karolinska InstitutetSweden--
Swedish Research CouncilSweden2012-5093
Goran Gustafsson Foundation for Research in Natural Sciences and MedicineSweden--
Sven and Ebba-Christina Hagberg foundationSweden--
European Molecular Biology Organization--
European UnionERC 260759

Revision History 

  • Version 1.0: 2017-06-14
    Type: Initial release
  • Version 1.1: 2017-06-28
    Changes: Database references
  • Version 1.2: 2017-09-06
    Changes: Author supporting evidence
  • Version 1.3: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Data collection, Derived calculations, Structure summary