5LMY

Solution structure of the m-pmv myristoylated matrix protein


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 15 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Membrane Interactions of the Mason-Pfizer Monkey Virus Matrix Protein and Its Budding Deficient Mutants.

Kroupa, T.Langerova, H.Dolezal, M.Prchal, J.Spiwok, V.Hunter, E.Rumlova, M.Hrabal, R.Ruml, T.

(2016) J.Mol.Biol. 428: 4708-4722

  • DOI: 10.1016/j.jmb.2016.10.010
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Matrix proteins (MAs) play a key role in the transport of retroviral proteins inside infected cells and in the interaction with cellular membranes. In most retroviruses, retroviral MAs are N-terminally myristoylated. This modification serves as a mem ...

    Matrix proteins (MAs) play a key role in the transport of retroviral proteins inside infected cells and in the interaction with cellular membranes. In most retroviruses, retroviral MAs are N-terminally myristoylated. This modification serves as a membrane targeting signal and also as an anchor for membrane interaction. The aim of this work was to characterize the interactions anchoring retroviral MA at the plasma membrane of infected cell. To address this issue, we compared the structures and membrane affinity of the Mason-Pfizer monkey virus (M-PMV) wild-type MA with its two budding deficient double mutants, that is, T41I/T78I and Y28F/Y67F. The structures of the mutants were determined using solution NMR spectroscopy, and their interactions with water-soluble phospholipids were studied. Water-soluble phospholipids are widely used models for studying membrane interactions by solution NMR spectroscopy. However, this approach might lead to artificial results due to unnatural hydrophobic interactions. Therefore, we used a new approach based on the measurement of the loss of the 1H NMR signal intensity of the protein sample induced by the addition of the liposomes containing phospholipids with naturally long fatty acids. HIV-1 MA was used as a positive control because its ability to interact with liposomes has already been described. We found that in contrast to HIV-1, the M-PMV MA interacted with the liposomes differently and much weaker. In our invivo experiments, the M-PMV MA did not co-localize with lipid rafts. Therefore, we concluded that M-PMV might adopt a different membrane binding mechanism than HIV-1.


    Related Citations: 
    • The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding.
      Prchal, J.,Srb, P.,Hunter, E.,Ruml, T.,Hrabal, R.
      (2012) J. Mol. Biol. 423: 427


    Organizational Affiliation

    Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technick√° 5, 166 28 Prague 6, Czech Republic; Laboratory of NMR Spectroscopy, University of Chemistry and Technology, Prague, Technick√° 5, 166 28 Prague 6, Czech Republic. Electronic address: kroupat@vscht.cz.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Matrix protein p10
A
125Mason-Pfizer monkey virusMutation(s): 0 
Gene Names: gag
Find proteins for P07567 (Mason-Pfizer monkey virus)
Go to UniProtKB:  P07567
Small Molecules
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
MYR
Query on MYR
A
NON-POLYMERC14 H28 O2

--

Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 15 
Software Package:
Software NamePurpose
X-PLORrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

  • Deposited Date: 2016-08-02 
  • Released Date: 2016-10-05 
  • Deposition Author(s): Prchal, J., Hrabal, R.
  • This entry supersedes: 2LPY

Revision History 

  • Version 1.0: 2016-10-05
    Type: Initial release
  • Version 1.1: 2016-10-19
    Type: Database references
  • Version 1.2: 2016-11-30
    Type: Database references
  • Version 1.3: 2019-05-08
    Type: Data collection