5JPW

Molecular basis for protein recognition specificity of the DYNLT1/Tctex1 canonical binding groove. Characterization of the interaction with activin receptor IIB


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Molecular Basis for the Protein Recognition Specificity of the Dynein Light Chain DYNLT1/Tctex1: CHARACTERIZATION OF THE INTERACTION WITH ACTIVIN RECEPTOR IIB.

Merino-Gracia, J.Zamora-Carreras, H.Bruix, M.Rodriguez-Crespo, I.

(2016) J.Biol.Chem. 291: 20962-20975

  • DOI: 10.1074/jbc.M116.736884

  • PubMed Abstract: 
  • It has been suggested that DYNLT1, a dynein light chain known to bind to various cellular and viral proteins, can function both as a molecular clamp and as a microtubule-cargo adapter. Recent data have shown that the DYNLT1 homodimer binds to two dyn ...

    It has been suggested that DYNLT1, a dynein light chain known to bind to various cellular and viral proteins, can function both as a molecular clamp and as a microtubule-cargo adapter. Recent data have shown that the DYNLT1 homodimer binds to two dynein intermediate chains to subsequently link cargo proteins such as the guanine nucleotide exchange factor Lfc or the small GTPases RagA and Rab3D. Although over 20 DYNLT1-interacting proteins have been reported, the exact sequence requirements that enable their association to the canonical binding groove or to the secondary site within the DYNLT1 surface are unknown. We describe herein the sequence recognition properties of the hydrophobic groove of DYNLT1 known to accommodate dynein intermediate chain. Using a pepscan approach, we have substituted each amino acid within the interacting peptide for all 20 natural amino acids and identified novel binding sequences. Our data led us to propose activin receptor IIB as a novel DYNLT1 ligand and suggest that DYNLT1 functions as a molecular dimerization engine bringing together two receptor monomers in the cytoplasmic side of the membrane. In addition, we provide evidence regarding a dual binding mode adopted by certain interacting partners such as Lfc or the parathyroid hormone receptor. Finally, we have used NMR spectroscopy to obtain the solution structure of human DYNLT1 forming a complex with dynein intermediate chain of ∼74 kDa; it is the first mammalian structure available.


    Organizational Affiliation

    From the Departamento Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain and.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Dynein light chain Tctex-type 1,Cytoplasmic dynein 1 intermediate chain 2
A, B
143Homo sapiensMutation(s): 0 
Gene Names: DYNC1I2 (DNCI2, DNCIC2), DYNLT1 (TCTEL1, TCTEX-1, TCTEX1)
Find proteins for Q13409 (Homo sapiens)
Go to Gene View: DYNC1I2
Go to UniProtKB:  Q13409
Find proteins for P63172 (Homo sapiens)
Go to Gene View: DYNLT1
Go to UniProtKB:  P63172
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Spanish Ministry of Economy and CompetitivenessSpainBFU2012-37934
Spanish Ministry of Economy and CompetitivenessSpainCTQ2014-52633-P
Comunidad de MadridSpainS2010/BMD-2305

Revision History 

  • Version 1.0: 2016-08-17
    Type: Initial release
  • Version 1.1: 2016-10-19
    Type: Database references
  • Version 1.2: 2017-09-06
    Type: Author supporting evidence
  • Version 1.3: 2019-05-08
    Type: Data collection