5IC0

Structural analysis of a talin triple domain module


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.97 Å
  • R-Value Free: 0.230 
  • R-Value Work: 0.201 
  • R-Value Observed: 0.203 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural and Functional Analysis of a Talin Triple-Domain Module Suggests an Alternative Talin Autoinhibitory Configuration.

Zhang, H.Chang, Y.C.Huang, Q.Brennan, M.L.Wu, J.

(2016) Structure 24: 721-729

  • DOI: 10.1016/j.str.2016.02.020
  • Primary Citation of Related Structures:  
    5IC0, 5IC1

  • PubMed Abstract: 
  • Talin plays an important role in regulating integrin-mediated signaling. Talin function is autoinhibited by intramolecular interactions between the integrin-binding F3 domain and the autoinhibitory domain (R9). We determined the crystal structure of a triple-domain fragment, R7R8R9, which contains R9 and the RIAM (Rap1-interacting adaptor molecule) binding domain (R8) ...

    Talin plays an important role in regulating integrin-mediated signaling. Talin function is autoinhibited by intramolecular interactions between the integrin-binding F3 domain and the autoinhibitory domain (R9). We determined the crystal structure of a triple-domain fragment, R7R8R9, which contains R9 and the RIAM (Rap1-interacting adaptor molecule) binding domain (R8). The structure reveals a crystallographic contact between R9 and a symmetrically related R8 domain, representing a homodimeric interaction in talin. Strikingly, we demonstrated that the α5 helix of R9 also interacts with the F3 domain, despite no interdomain contact involving the α5 helix in the crystal structure of an F2F3:R9 autoinhibitory complex reported previously. Mutations on the α5 helix significantly diminish the F3:R9 association and lead to elevated talin activity. Our results offer biochemical and functional evidence of the existence of a new talin autoinhibitory configuration, thus providing a more comprehensive understanding of talin autoinhibition, regulation, and quaternary structure assembly.


    Organizational Affiliation

    Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA. Electronic address: jinhua.wu@fccc.edu.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Talin-1A469Mus musculusMutation(s): 0 
Gene Names: Tln1Tln
UniProt
Find proteins for P26039 (Mus musculus)
Explore P26039 
Go to UniProtKB:  P26039
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
EDO
Query on EDO

Download Ideal Coordinates CCD File 
B [auth A], C [auth A], D [auth A], E [auth A]1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.97 Å
  • R-Value Free: 0.230 
  • R-Value Work: 0.201 
  • R-Value Observed: 0.203 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 49.007α = 90
b = 77.573β = 109.82
c = 61.622γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
HKL-2000data reduction
SCALEPACKdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Cancer Institute (NIH/NCI)United StatesCA006927
Pennsylvania Department of HealthUnited States4100068716, ACS RSG-15-167-01-DMC
CCSG Supported Pilot Projects awardUnited States5P30CA006927-51

Revision History  (Full details and data files)

  • Version 1.0: 2016-05-18
    Type: Initial release
  • Version 1.1: 2017-09-20
    Changes: Author supporting evidence, Database references, Derived calculations
  • Version 1.2: 2019-12-04
    Changes: Author supporting evidence