5H72

Structure of the periplasmic domain of FliP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.4 Å
  • R-Value Free: 0.261 
  • R-Value Work: 0.211 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex

Fukumura, T.Makino, F.Dietsche, T.Kinoshita, M.Kato, T.Wagner, S.Namba, K.Imada, K.Minamino, T.

(2017) PLoS Biol. 15: e2002281-e2002281

  • DOI: 10.1371/journal.pbio.2002281

  • PubMed Abstract: 
  • The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate co ...

    The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unknown how they form the gate complex. Here we report that FliP forms a homohexameric ring with a diameter of 10 nm. Alanine substitutions of conserved Phe-137, Phe-150, and Glu-178 residues in the periplasmic domain of FliP (FliPP) inhibited FliP6 ring formation, suppressing flagellar protein export. FliO formed a 5-nm ring structure with 3 clamp-like structures that bind to the FliP6 ring. The crystal structure of FliPP derived from Thermotoga maritia, and structure-based photo-crosslinking experiments revealed that Phe-150 and Ser-156 of FliPP are involved in the FliP-FliP interactions and that Phe-150, Arg-152, Ser-156, and Pro-158 are responsible for the FliP-FliO interactions. Overexpression of FliP restored motility of a ∆fliO mutant to the wild-type level, suggesting that the FliP6 ring is a functional unit in the export gate complex and that FliO is not part of the final gate structure. Copurification assays revealed that FlhA, FlhB, FliQ, and FliR are associated with the FliO/FliP complex. We propose that the assembly of the export gate complex begins with FliP6 ring formation with the help of the FliO scaffold, followed by FliQ, FliR, and FlhB and finally FlhA during MS ring formation.


    Related Citations: 
    • Crystallization and preliminary X-ray analysis of the periplasmic domain of FliP, an integral membrane component of the bacterial flagellar type III protein-export apparatus
      Fukumura, T.,Furukawa, Y.,Kawaguchi, T.,Saijo-Hamano, Y.,Namba, K.,Imada, K.,Minamino, T.
      (2014) Acta Crystallogr.,Sect.F 70: 1215


    Organizational Affiliation

    Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Flagellar biosynthetic protein FliP
A, B, C, D, E, F, G, H
82Thermotoga maritima (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099)Mutation(s): 0 
Gene Names: fliP
Find proteins for Q9WZG2 (Thermotoga maritima (strain ATCC 43589 / MSB8 / DSM 3109 / JCM 10099))
Go to UniProtKB:  Q9WZG2
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.4 Å
  • R-Value Free: 0.261 
  • R-Value Work: 0.211 
  • Space Group: P 62 2 2
Unit Cell:
Length (Å)Angle (°)
a = 114.880α = 90.00
b = 114.880β = 90.00
c = 193.781γ = 120.00
Software Package:
Software NamePurpose
MOSFLMdata reduction
PHENIXphasing
PHENIXrefinement
SCALAdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2017-08-02
    Type: Initial release
  • Version 1.1: 2017-08-30
    Type: Database references