4WMG

Structure of hen egg-white lysozyme from a microfludic harvesting device using synchrotron radiation (2.5A)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.5 Å
  • R-Value Free: 0.306 
  • R-Value Work: 0.274 

wwPDB Validation 3D Report Full Report


This is version 1.0 of the entry. See complete history

Literature

Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array.

Lyubimov, A.Y.Murray, T.D.Koehl, A.Araci, I.E.Uervirojnangkoorn, M.Zeldin, O.B.Cohen, A.E.Soltis, S.M.Baxter, E.L.Brewster, A.S.Sauter, N.K.Brunger, A.T.Berger, J.M.

(2015) Acta Crystallogr.,Sect.D 71: 928-940

  • DOI: 10.1107/S1399004715002308

  • PubMed Abstract: 
  • X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimiz ...

    X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.


    Organizational Affiliation

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Lysozyme C
A
129Gallus gallusGene Names: LYZ
EC: 3.2.1.17
Find proteins for P00698 (Gallus gallus)
Go to Gene View: LYZ
Go to UniProtKB:  P00698
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.5 Å
  • R-Value Free: 0.306 
  • R-Value Work: 0.274 
  • Space Group: P 43 21 2
Unit Cell:
Length (Å)Angle (°)
a = 79.250α = 90.00
b = 79.250β = 90.00
c = 37.970γ = 90.00
Software Package:
Software NamePurpose
PHENIXrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History & Funding Information

Deposition Data


Funding OrganizationCountryGrant Number
Howard Hughes Medical InstituteUnited States--

Revision History 

  • Version 1.0: 2015-04-22
    Type: Initial release