4R6B

Rational Design of Enhanced Photoresistance in a Photoswitchable Fluorescent Protein


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.224 
  • R-Value Work: 0.192 
  • R-Value Observed: 0.202 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Rational design of enhanced photoresistance in a photoswitchable fluorescent protein.

Duan, C.Byrdin, M.El Khatib, M.Henry, X.Adam, V.Bourgeois, D.

(2015) Methods Appl Fluoresc 3: 014004-014004

  • DOI: 10.1088/2050-6120/3/1/014004
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Fluorescent proteins are particularly susceptible to photobleaching, the permanent loss of fluorescence emission resulting from photodestruction of the chromophore. In the case of Reversibly Switchable Fluorescent Proteins (RSFPs), which can be switc ...

    Fluorescent proteins are particularly susceptible to photobleaching, the permanent loss of fluorescence emission resulting from photodestruction of the chromophore. In the case of Reversibly Switchable Fluorescent Proteins (RSFPs), which can be switched back and forth between a non-fluorescent and a fluorescent state, the achievable number of switching cycles is limited by photobleaching, a process known as photofatigue. Photofatigue has become a crucial limitation in a number of advanced applications based on repeated photoswitching of RSFPs, notably in the field of super-resolution fluorescence microscopy. Here, based on our previous structural investigation of photobleaching mechanisms in IrisFP, an RSFP also capable of green-to-red photoconversion, we present the rational design of a single-mutant IrisFP-M159A that displays considerably enhanced photostability. The results suggest that, under moderate illumination intensities, photobleaching of IrisFP-like Anthozoan fluorescent proteins such as EosFP, Dendra or Dronpa derivatives is mainly driven by an oxygen-dependent mechanism resulting in the irreversible sulfoxidation of methionine 159. The photofatigue decay profiles of IrisFP and its photoresistant mutant IrisFP-M159A were investigated in different experimental conditions, in vitro and in cellulo. Although the performance of the mutant was found to be always superior, the results showed switching behaviors strongly dependent on the nanoenvironment. Thus, in general, assessment of photostability and switching properties of RSFPs should be carried out in real experimental conditions.


    Organizational Affiliation

    Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France. CNRS, IBS, F-38044 Grenoble, France. CEA, IBS, F-38044 Grenoble, France.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Green to red photoconvertible GFP-like protein EosFPA, B, C, D230Lobophyllia hemprichiiMutation(s): 4 
Find proteins for Q5S6Z9 (Lobophyllia hemprichii)
Explore Q5S6Z9 
Go to UniProtKB:  Q5S6Z9
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download CCD File 
A, B, C, D
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
SO3
Query on SO3

Download CCD File 
A, C, D
SULFITE ION
O3 S
LSNNMFCWUKXFEE-UHFFFAOYSA-L
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
CR8
Query on CR8
A,B,C,DL-PEPTIDE LINKINGC17 H16 N5 O4HIS,TYR,GLY
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.224 
  • R-Value Work: 0.192 
  • R-Value Observed: 0.202 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 86.701α = 90
b = 96.35β = 90
c = 139.426γ = 90
Software Package:
Software NamePurpose
MxCuBEdata collection
MOLREPphasing
PHENIXrefinement
XDSdata reduction
XDSdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2015-02-04
    Type: Initial release
  • Version 1.1: 2015-11-11
    Changes: Database references, Structure summary
  • Version 1.2: 2018-04-18
    Changes: Advisory, Data collection, Database references