4NXB

Crystal structure of iLOV-I486(2LT) at pH 7.0


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.56 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.222 
  • R-Value Observed: 0.222 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.0 of the entry. See complete history


Literature

Significant Expansion of Fluorescent Protein Sensing Ability through the Genetic Incorporation of Superior Photo-Induced Electron-Transfer Quenchers

Liu, X.Jiang, L.Li, J.Wang, L.Yu, Y.Zhou, Q.Lv, X.Gong, W.Lu, Y.Wang, J.

(2014) J Am Chem Soc 

  • DOI: 10.1021/ja505219r
  • Primary Citation of Related Structures:  
    4NXF, 4NXG, 4NXB, 4NXE, 4NX2

  • PubMed Abstract: 
  • Photo-induced electron transfer (PET) is ubiquitous for photosynthesis and fluorescent sensor design. However, genetically coded PET sensors are underdeveloped, due to the lack of methods to site-specifically install PET probes on proteins. Here we describe a family of acid and Mn(III) turn-on fluorescent protein (FP) sensors, named iLovU, based on PET and the genetic incorporation of superior PET quenchers in the fluorescent flavoprotein iLov ...

    Photo-induced electron transfer (PET) is ubiquitous for photosynthesis and fluorescent sensor design. However, genetically coded PET sensors are underdeveloped, due to the lack of methods to site-specifically install PET probes on proteins. Here we describe a family of acid and Mn(III) turn-on fluorescent protein (FP) sensors, named iLovU, based on PET and the genetic incorporation of superior PET quenchers in the fluorescent flavoprotein iLov. Using the iLovU PET sensors, we monitored the cytoplasmic acidification process, and achieved Mn(III) fluorescence sensing for the first time. The iLovU sensors should be applicable for studying pH changes in living cells, monitoring biogentic Mn(III) in the environment, and screening for efficient manganese peroxidase, which is highly desirable for lignin degradation and biomass conversion. Our work establishes a platform for many more protein PET sensors, facilitates the de novo design of metalloenzymes harboring redox active residues, and expands our ability to probe protein conformational dynamics.


    Organizational Affiliation

    Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences , Chaoyang District, Beijing, 100101, China.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Phototropin-2A, B118Arabidopsis thalianaMutation(s): 6 
Gene Names: PHOT2CAV1KIN7NPL1At5g58140K21L19.6
EC: 2.7.11.1
UniProt
Find proteins for P93025 (Arabidopsis thaliana)
Explore P93025 
Go to UniProtKB:  P93025
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
FMN (Subject of Investigation/LOI)
Query on FMN

Download Ideal Coordinates CCD File 
C [auth A], D [auth B]FLAVIN MONONUCLEOTIDE
C17 H21 N4 O9 P
FVTCRASFADXXNN-SCRDCRAPSA-N
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
2LT
Query on 2LT
A, BL-PEPTIDE LINKINGC9 H9 Cl2 N O3TYR
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.56 Å
  • R-Value Free: 0.235 
  • R-Value Work: 0.222 
  • R-Value Observed: 0.222 
  • Space Group: P 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 33.978α = 83.88
b = 37.696β = 78.35
c = 53.968γ = 80.4
Software Package:
Software NamePurpose
HKL-2000data collection
MLPHAREphasing
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment  



Entry History 

Deposition Data

  • Deposited Date: 2013-12-09 
  • Released Date: 2014-09-24 
  • Deposition Author(s): Wang, J., Li, J., Liu, X.

Revision History  (Full details and data files)

  • Version 1.0: 2014-09-24
    Type: Initial release