4IBZ

Human p53 core domain with hot spot mutation R273C and second-site suppressor mutation T284R


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.92 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.179 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein-DNA interactions.

Eldar, A.Rozenberg, H.Diskin-Posner, Y.Rohs, R.Shakked, Z.

(2013) Nucleic Acids Res. 41: 8748-8759

  • DOI: 10.1093/nar/gkt630
  • Primary Citation of Related Structures:  4IBQ, 4IBS, 4IBT, 4IBU, 4IBV, 4IBW, 4IBY, 4IJT

  • PubMed Abstract: 
  • A p53 hot-spot mutation found frequently in human cancer is the replacement of R273 by histidine or cysteine residues resulting in p53 loss of function as a tumor suppressor. These mutants can be reactivated by the incorporation of second-site suppre ...

    A p53 hot-spot mutation found frequently in human cancer is the replacement of R273 by histidine or cysteine residues resulting in p53 loss of function as a tumor suppressor. These mutants can be reactivated by the incorporation of second-site suppressor mutations. Here, we present high-resolution crystal structures of the p53 core domains of the cancer-related proteins, the rescued proteins and their complexes with DNA. The structures show that inactivation of p53 results from the incapacity of the mutated residues to form stabilizing interactions with the DNA backbone, and that reactivation is achieved through alternative interactions formed by the suppressor mutations. Detailed structural and computational analysis demonstrates that the rescued p53 complexes are not fully restored in terms of DNA structure and its interface with p53. Contrary to our previously studied wild-type (wt) p53-DNA complexes showing non-canonical Hoogsteen A/T base pairs of the DNA helix that lead to local minor-groove narrowing and enhanced electrostatic interactions with p53, the current structures display Watson-Crick base pairs associated with direct or water-mediated hydrogen bonds with p53 at the minor groove. These findings highlight the pivotal role played by R273 residues in supporting the unique geometry of the DNA target and its sequence-specific complex with p53.


    Organizational Affiliation

    Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel and Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Cellular tumor antigen p53
A, B, C, D
200Homo sapiensGene Names: TP53 (P53)
Find proteins for P04637 (Homo sapiens)
Go to Gene View: TP53
Go to UniProtKB:  P04637
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download SDF File 
Download CCD File 
A, B, C, D
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
ACT
Query on ACT

Download SDF File 
Download CCD File 
B, D
ACETATE ION
C2 H3 O2
QTBSBXVTEAMEQO-UHFFFAOYSA-M
 Ligand Interaction
EDO
Query on EDO

Download SDF File 
Download CCD File 
A, B, C, D
1,2-ETHANEDIOL
ETHYLENE GLYCOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.92 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.179 
  • Space Group: P 1 21 1
Unit Cell:
Length (Å)Angle (°)
a = 68.742α = 90.00
b = 70.413β = 89.92
c = 84.585γ = 90.00
Software Package:
Software NamePurpose
DNAdata collection
SCALEPACKdata scaling
DENZOdata reduction
PDB_EXTRACTdata extraction
HKL-2000data reduction
HKL-2000data scaling
MOLREPphasing
PHENIXrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2013-08-14
    Type: Initial release
  • Version 1.1: 2013-10-23
    Type: Database references
  • Version 1.2: 2017-11-15
    Type: Refinement description