4F9E

Cyclic di-GMP Sensing via the Innate Immune Signaling Protein STING


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.75 Å
  • R-Value Free: 0.258 
  • R-Value Work: 0.212 
  • R-Value Observed: 0.214 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Cyclic di-GMP Sensing via the Innate Immune Signaling Protein STING.

Yin, Q.Tian, Y.Kabaleeswaran, V.Jiang, X.Tu, D.Eck, M.J.Chen, Z.J.Wu, H.

(2012) Mol Cell 46: 735-745

  • DOI: 10.1016/j.molcel.2012.05.029
  • Primary Citation of Related Structures:  
    4F9E, 4F9G

  • PubMed Abstract: 
  • Detection of foreign materials is the first step of successful immune responses. Stimulator of interferon genes (STING) was shown to directly bind cyclic diguanylate monophosphate (c-di-GMP), a bacterial second messenger, and to elicit strong interfe ...

    Detection of foreign materials is the first step of successful immune responses. Stimulator of interferon genes (STING) was shown to directly bind cyclic diguanylate monophosphate (c-di-GMP), a bacterial second messenger, and to elicit strong interferon responses. Here we elucidate the structural features of the cytosolic c-di-GMP binding domain (CBD) of STING and its complex with c-di-GMP. The CBD exhibits an α + β fold and is a dimer in the crystal and in solution. Surprisingly, one c-di-GMP molecule binds to the central crevice of a STING dimer, using a series of stacking and hydrogen bonding interactions. We show that STING is autoinhibited by an intramolecular interaction between the CBD and the C-terminal tail (CTT) and that c-di-GMP releases STING from this autoinhibition by displacing the CTT. The structures provide a remarkable example of pathogen-host interactions in which a unique microbial molecule directly engages the innate immune system.


    Organizational Affiliation

    Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA. qiy2001@med.cornell.edu



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Transmembrane protein 173A265Homo sapiensMutation(s): 0 
Gene Names: TMEM173ERISMITASTINGSTING1
Find proteins for Q86WV6 (Homo sapiens)
Explore Q86WV6 
Go to UniProtKB:  Q86WV6
NIH Common Fund Data Resources
PHAROS  Q86WV6
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.75 Å
  • R-Value Free: 0.258 
  • R-Value Work: 0.212 
  • R-Value Observed: 0.214 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 61.4α = 90
b = 61.4β = 90
c = 118.31γ = 90
Software Package:
Software NamePurpose
SCALAdata scaling
SOLVEphasing
RESOLVEphasing
PHENIXrefinement
PDB_EXTRACTdata extraction
XDSdata reduction

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2012-07-25
    Type: Initial release
  • Version 1.1: 2014-01-01
    Changes: Other