4EFX

Highly biologically active insulin with additional disulfide bond


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.98 Å
  • R-Value Free: 0.278 
  • R-Value Work: 0.207 

wwPDB Validation 3D Report Full Report


This is version 1.0 of the entry. See complete history

Literature

Insulin analog with additional disulfide bond has increased stability and preserved activity.

Vinther, T.N.Norrman, M.Ribel, U.Huus, K.Schlein, M.Steensgaard, D.B.Pedersen, T.A.Pettersson, I.Ludvigsen, S.Kjeldsen, T.Jensen, K.J.Hubalek, F.

(2013) Protein Sci. 22: 296-305

  • DOI: 10.1002/pro.2211

  • PubMed Abstract: 
  • Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might ...

    Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation under high physical stress even though the C-terminus of the B-chain thought to be directly involved in fibril formation was not modified. Importantly, this analog was capable of forming hexamer upon Zn addition as typical for wild-type insulin and its crystal structure showed only minor deviations from the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R-state conformation and thus showing that the R-state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example of an insulin analog featuring a fourth disulfide bond with increased structural stability and retained function.


    Organizational Affiliation

    Diabetes Research Unit, Novo Nordisk A/S, Novo Nordisk Park, Måløv DK-2760, Denmark.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Insulin
A, C
21Homo sapiensMutation(s): 1 
Gene Names: INS
Find proteins for P01308 (Homo sapiens)
Go to Gene View: INS
Go to UniProtKB:  P01308
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
Insulin
B, D
28Homo sapiensMutation(s): 1 
Gene Names: INS
Find proteins for P01308 (Homo sapiens)
Go to Gene View: INS
Go to UniProtKB:  P01308
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download SDF File 
Download CCD File 
B, D
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.98 Å
  • R-Value Free: 0.278 
  • R-Value Work: 0.207 
  • Space Group: H 3
Unit Cell:
Length (Å)Angle (°)
a = 79.367α = 90.00
b = 79.367β = 90.00
c = 34.228γ = 120.00
Software Package:
Software NamePurpose
PHASERphasing
HKL-2000data reduction
SCALEPACKdata scaling
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2013-03-06
    Type: Initial release