4ABO

Mal3 CH domain homology model and mammalian tubulin (2XRP) docked into the 8.6-Angstrom cryo-EM map of Mal3-GTPgammaS-microtubules


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 8.6 Å
  • Aggregation State: FILAMENT 
  • Reconstruction Method: SINGLE PARTICLE 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Ebs Recognize a Nucleotide-Dependent Structural CAP at Growing Microtubule Ends.

Maurer, S.P.Fourniol, F.J.Bohner, G.Moores, C.A.Surrey, T.

(2012) Cell 149: 371

  • DOI: 10.1016/j.cell.2012.02.049

  • PubMed Abstract: 
  • Growing microtubule ends serve as transient binding platforms for essential proteins that regulate microtubule dynamics and their interactions with cellular substructures. End-binding proteins (EBs) autonomously recognize an extended region at growin ...

    Growing microtubule ends serve as transient binding platforms for essential proteins that regulate microtubule dynamics and their interactions with cellular substructures. End-binding proteins (EBs) autonomously recognize an extended region at growing microtubule ends with unknown structural characteristics and then recruit other factors to the dynamic end structure. Using cryo-electron microscopy, subnanometer single-particle reconstruction, and fluorescence imaging, we present a pseudoatomic model of how the calponin homology (CH) domain of the fission yeast EB Mal3 binds to the end regionsĀ of growing microtubules. The Mal3 CH domain bridges protofilaments except at the microtubule seam. By binding close to the exchangeable GTP-binding site, the CH domain is ideally positioned to sense the microtubule's nucleotide state. The same microtubule-end region is also a stabilizing structural cap protecting the microtubule from depolymerization. This insight supports a common structural link between two important biological phenomena, microtubule dynamic instability and end tracking.


    Organizational Affiliation

    Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
TUBULIN BETA CHAIN
A, C, E, G
445Sus scrofaMutation(s): 0 
Find proteins for P02554 (Sus scrofa)
Go to UniProtKB:  P02554
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
TUBULIN ALPHA-1A CHAIN
B, D, F, H
451Sus scrofaMutation(s): 0 
Gene Names: TUBA1A
Find proteins for P02550 (Sus scrofa)
Go to Gene View: TUBA1A
Go to UniProtKB:  P02550
Entity ID: 3
MoleculeChainsSequence LengthOrganismDetails
MICROTUBULE INTEGRITY PROTEIN MAL3
I
145Schizosaccharomyces pombe (strain 972 / ATCC 24843)Mutation(s): 0 
Gene Names: mal3
Find proteins for Q10113 (Schizosaccharomyces pombe (strain 972 / ATCC 24843))
Go to UniProtKB:  Q10113
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GTP
Query on GTP

Download SDF File 
Download CCD File 
B, D, F, H
GUANOSINE-5'-TRIPHOSPHATE
C10 H16 N5 O14 P3
XKMLYUALXHKNFT-UUOKFMHZSA-N
 Ligand Interaction
GSP
Query on GSP

Download SDF File 
Download CCD File 
A, C, E, G
5'-GUANOSINE-DIPHOSPHATE-MONOTHIOPHOSPHATE
C10 H16 N5 O13 P3 S
XOFLBQFBSOEHOG-UUOKFMHZSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 8.6 Å
  • Aggregation State: FILAMENT 
  • Reconstruction Method: SINGLE PARTICLE 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2012-06-06
    Type: Initial release
  • Version 1.1: 2017-04-19
    Type: Other
  • Version 1.2: 2017-08-30
    Type: Data collection, Refinement description