4A3X

Structure of the N-terminal domain of the Epa1 adhesin (Epa1-Np) from the pathogenic yeast Candida glabrata, in complex with calcium and lactose


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.210 
  • R-Value Work: 0.172 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

The Epithelial Adhesin 1 (Epa1P) from the Human-Pathogenic Yeast Candida Glabrata : Structural and Functional Study of the Carbohydrate-Binding Domain

Ielasi, F.S.Decanniere, K.Willaert, R.G.

(2012) Acta Crystallogr.,Sect.D 68: 210

  • DOI: 10.1107/S0907444911054898

  • PubMed Abstract: 
  • The yeast Candida glabrata represents the second major cause of clinical candidiasis cases in the world. The ability of this opportunistic pathogen to adhere to human epithelial and endothelial cells relies on the Epa adhesins, a large set of cell-wa ...

    The yeast Candida glabrata represents the second major cause of clinical candidiasis cases in the world. The ability of this opportunistic pathogen to adhere to human epithelial and endothelial cells relies on the Epa adhesins, a large set of cell-wall proteins whose N-terminal domains are endowed with a calcium-dependent lectin activity. This feature allows the yeast cells to adhere to host cells by establishing multiple interactions with the glycans expressed on their cell membrane. The ligand-binding domain of the Epa1p adhesin, which is one of the best characterized in the Epa family, was expressed in Escherichia coli, purified and crystallized in complex with lactose. Sequence identity with the domain of another yeast adhesin, the Flo5p flocculin from Saccharomyces cerevisiae, was exploited for molecular replacement and the structure of the domain was solved at a resolution of 1.65 Å. The protein is a member of the PA14 superfamily. It has a β-sandwich core and a DcisD calcium-binding motif, which is also present in the binding site of Flo5p. However, Epa1p differs from this homologue by the lack of a Flo5-like subdomain and by a significantly decreased accessibility of the solvent to the binding site, in which a calcium ion still plays an active role in the interactions with carbohydrates. This structural insight, together with fluorescence-assay data, confirms and explains the higher specificity of Epa1p adhesin for glycan molecules compared with the S. cerevisiae flocculins.


    Organizational Affiliation

    Research Group Structural Biology Brussels (SBB), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
EPA1P
A
227Candida glabrataMutation(s): 0 
Gene Names: EPA1
Find proteins for Q6VBJ0 (Candida glabrata)
Go to UniProtKB:  Q6VBJ0
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
CA
Query on CA

Download SDF File 
Download CCD File 
A
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
LAT
Query on LAT

Download SDF File 
Download CCD File 
A
BETA-LACTOSE
C12 H22 O11
GUBGYTABKSRVRQ-DCSYEGIMSA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
LATKd: 31900 nM BINDINGMOAD
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.210 
  • R-Value Work: 0.172 
  • Space Group: C 2 2 21
Unit Cell:
Length (Å)Angle (°)
a = 75.481α = 90.00
b = 105.453β = 90.00
c = 69.571γ = 90.00
Software Package:
Software NamePurpose
REFMACrefinement
XDSdata scaling
BALBESphasing
XDSdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2012-02-22
    Type: Initial release
  • Version 1.1: 2012-03-07
    Type: Other
  • Version 1.2: 2012-03-28
    Type: Other