4A21

Structure of Mycobacterium tuberculosis fructose 1,6-bisphosphate aldolase bound to sulfate


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.35 Å
  • R-Value Free: 0.261 
  • R-Value Work: 0.211 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Glycolytic and Non-Glycolytic Functions of the Fructose-1,6-Bisphosphate Aldolase of Mycobacterium Tuberculosis, an Essential Enzyme Produced by Replicating and Non-Replicating Bacilli

De La Paz Santangelo, M.Gest, P.M.Guerin, M.E.Coincon, M.Pham, H.Ryan, G.Puckett, S.E.Spencer, J.S.Gonzalez-Juarrero, M.Daher, R.Lenaerts, A.J.Schnappinger, D.Therisod, M.Ehrt, S.Sygusch, J.Jackson, M.

(2011) J.Biol.Chem. 286: 40219

  • DOI: 10.1074/jbc.M111.259440
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The search for antituberculosis drugs active against persistent bacilli has led to our interest in metallodependent class II fructose-1,6-bisphosphate aldolase (FBA-tb), a key enzyme of gluconeogenesis absent from mammalian cells. Knock-out experimen ...

    The search for antituberculosis drugs active against persistent bacilli has led to our interest in metallodependent class II fructose-1,6-bisphosphate aldolase (FBA-tb), a key enzyme of gluconeogenesis absent from mammalian cells. Knock-out experiments at the fba-tb locus indicated that this gene is required for the growth of Mycobacterium tuberculosis on gluconeogenetic substrates and in glucose-containing medium. Surface labeling and enzymatic activity measurements revealed that this enzyme was exported to the cell surface of M. tuberculosis and produced under various axenic growth conditions including oxygen depletion and hence by non-replicating bacilli. Importantly, FBA-tb was also produced in vivo in the lungs of infected guinea pigs and mice. FBA-tb bound human plasmin(ogen) and protected FBA-tb-bound plasmin from regulation by α(2)-antiplasmin, suggestive of an involvement of this enzyme in host/pathogen interactions. The crystal structures of FBA-tb in the native form and in complex with a hydroxamate substrate analog were determined to 2.35- and 1.9-Å resolution, respectively. Whereas inhibitor attachment had no effect on the plasminogen binding activity of FBA-tb, it competed with the natural substrate of the enzyme, fructose 1,6-bisphosphate, and substantiated a previously unknown reaction mechanism associated with metallodependent aldolases involving recruitment of the catalytic zinc ion by the substrate upon active site binding. Altogether, our results highlight the potential of FBA-tb as a novel therapeutic target against both replicating and non-replicating bacilli.


    Organizational Affiliation

    Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
FRUCTOSE-BISPHOSPHATE ALDOLASE
A, B, C, D
344Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)Mutation(s): 0 
Gene Names: fba
EC: 4.1.2.13
Find proteins for P9WQA3 (Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv))
Go to UniProtKB:  P9WQA3
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NA
Query on NA

Download SDF File 
Download CCD File 
A
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
 Ligand Interaction
SO4
Query on SO4

Download SDF File 
Download CCD File 
A, B, C, D
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.35 Å
  • R-Value Free: 0.261 
  • R-Value Work: 0.211 
  • Space Group: C 1 2 1
Unit Cell:
Length (Å)Angle (°)
a = 336.945α = 90.00
b = 43.234β = 99.57
c = 103.020γ = 90.00
Software Package:
Software NamePurpose
PHENIXrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Revision History 

  • Version 1.0: 2011-10-05
    Type: Initial release
  • Version 1.1: 2011-10-26
    Type: Atomic model, Database references, Derived calculations, Other
  • Version 1.2: 2011-11-30
    Type: Database references