3IIV

Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.211 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Evolutionary Optimization of Computationally Designed Enzymes: Kemp Eliminases of the KE07 Series.

Khersonsky, O.Rothlisberger, D.Dym, O.Albeck, S.Jackson, C.J.Baker, D.Tawfik, D.S.

(2010) J Mol Biol 396: 1025-1042

  • DOI: https://doi.org/10.1016/j.jmb.2009.12.031
  • Primary Citation of Related Structures:  
    3IIO, 3IIP, 3IIV

  • PubMed Abstract: 

    Understanding enzyme catalysis through the analysis of natural enzymes is a daunting challenge-their active sites are complex and combine numerous interactions and catalytic forces that are finely coordinated. Study of more rudimentary (wo)man-made enzymes provides a unique opportunity for better understanding of enzymatic catalysis. KE07, a computationally designed Kemp eliminase that employs a glutamate side chain as the catalytic base for the critical proton abstraction step and an apolar binding site to guide substrate binding, was optimized by seven rounds of random mutagenesis and selection, resulting in a >200-fold increase in catalytic efficiency. Here, we describe the directed evolution process in detail and the biophysical and crystallographic studies of the designed KE07 and its evolved variants. The optimization of KE07's activity to give a k(cat)/K(M) value of approximately 2600 s(-1) M(-1) and an approximately 10(6)-fold rate acceleration (k(cat)/k(uncat)) involved the incorporation of up to eight mutations. These mutations led to a marked decrease in the overall thermodynamic stability of the evolved KE07s and in the configurational stability of their active sites. We identified two primary contributions of the mutations to KE07's improved activity: (i) the introduction of new salt bridges to correct a mistake in the original design that placed a lysine for leaving-group protonation without consideration of its "quenching" interactions with the catalytic glutamate, and (ii) the tuning of the environment, the pK(a) of the catalytic base, and its interactions with the substrate through the evolution of a network of hydrogen bonds consisting of several charged residues surrounding the active site.


  • Organizational Affiliation

    Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
KE7 KE7_R7_1/3H
A, B
263Escherichia coliMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
MG
Query on MG

Download Ideal Coordinates CCD File 
C [auth B]MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.247 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.211 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 38.77α = 90
b = 82.324β = 90
c = 175.4γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
PHASERphasing
REFMACrefinement
HKL-2000data reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-03-02
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2014-12-02
    Changes: Structure summary
  • Version 1.3: 2023-11-01
    Changes: Data collection, Database references, Derived calculations, Refinement description