3AR4

Calcium pump crystal structure with bound ATP and TG in the absence of Ca2+


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.281 
  • R-Value Work: 0.239 
  • R-Value Observed: 0.239 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca2+-ATPase in the absence of Ca2+

Toyoshima, C.Yonekura, S.Tsueda, J.Iwasawa, S.

(2011) Proc Natl Acad Sci U S A 108: 1833-1838

  • DOI: 10.1073/pnas.1017659108
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Trinitrophenyl derivatives of adenine nucleotides are widely used for probing ATP-binding sites. Here we describe crystal structures of Ca(2+)-ATPase, a representative P-type ATPase, in the absence of Ca(2+) with bound ATP, trinitrophenyl-ATP, -ADP, ...

    Trinitrophenyl derivatives of adenine nucleotides are widely used for probing ATP-binding sites. Here we describe crystal structures of Ca(2+)-ATPase, a representative P-type ATPase, in the absence of Ca(2+) with bound ATP, trinitrophenyl-ATP, -ADP, and -AMP at better than 2.4-Å resolution, stabilized with thapsigargin, a potent inhibitor. These crystal structures show that the binding mode of the trinitrophenyl derivatives is distinctly different from the parent adenine nucleotides. The adenine binding pocket in the nucleotide binding domain of Ca(2+)-ATPase is now occupied by the trinitrophenyl group, and the side chains of two arginines sandwich the adenine ring, accounting for the much higher affinities of the trinitrophenyl derivatives. Trinitrophenyl nucleotides exhibit a pronounced fluorescence in the E2P ground state but not in the other E2 states. Crystal structures of the E2P and E2 ∼ P analogues of Ca(2+)-ATPase with bound trinitrophenyl-AMP show that different arrangements of the three cytoplasmic domains alter the orientation and water accessibility of the trinitrophenyl group, explaining the origin of "superfluorescence." Thus, the crystal structures demonstrate that ATP and its derivatives are highly adaptable to a wide range of site topologies stabilized by a variety of interactions.


    Organizational Affiliation

    Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan. ct@iam.u-tokyo.ac.jp



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Sarcoplasmic/endoplasmic reticulum calcium ATPase 1
A
995Oryctolagus cuniculusMutation(s): 1 
Gene Names: ATP2A1
EC: 3.6.3.8 (PDB Primary Data), 7.2.2.10 (UniProt)
Find proteins for P04191 (Oryctolagus cuniculus)
Go to UniProtKB:  P04191
Small Molecules
Ligands 5 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
PTY
Query on PTY

Download CCD File 
A
PHOSPHATIDYLETHANOLAMINE
C40 H80 N O8 P
NJGIRBISCGPRPF-KXQOOQHDSA-N
 Ligand Interaction
TG1
Query on TG1

Download CCD File 
A
OCTANOIC ACID [3S-[3ALPHA, 3ABETA, 4ALPHA, 6BETA, 6ABETA, 7BETA, 8ALPHA(Z), 9BALPHA]]-6-(ACETYLOXY)-2,3,-3A,4,5,6,6A,7,8,9B-DECAHYDRO-3,3A-DIHYDROXY-3,6,9-TRIMETHYL-8-[(2-METHYL-1-OXO-2-BUTENYL)OX Y]-2-OXO-4-(1-OXOBUTOXY)-AZULENO[4,5-B]FURAN-7-YL ESTER
C34 H50 O12
IXFPJGBNCFXKPI-FSIHEZPISA-N
 Ligand Interaction
ATP
Query on ATP

Download CCD File 
A
ADENOSINE-5'-TRIPHOSPHATE
C10 H16 N5 O13 P3
ZKHQWZAMYRWXGA-KQYNXXCUSA-N
 Ligand Interaction
MG
Query on MG

Download CCD File 
A
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
NA
Query on NA

Download CCD File 
A
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
TG1IC50:  0.20000000298023224   nM  BindingDB
ATPKd:  156   nM  Binding MOAD
TG1Kd:  0.20000000298023224   nM  BindingDB
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.281 
  • R-Value Work: 0.239 
  • R-Value Observed: 0.239 
  • Space Group: P 41 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 71.381α = 90
b = 71.381β = 90
c = 590.69γ = 90
Software Package:
Software NamePurpose
BSSdata collection
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2011-02-02
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2013-07-31
    Changes: Database references