3ZFM

Crystal structure of EphB2


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.27 Å
  • R-Value Free: 0.263 
  • R-Value Work: 0.235 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Completing the Structural Family Portrait of the Human Ephb Tyrosine Kinase Domains

Overman, R.C.Debreczeni, J.E.Truman, C.M.Mcalister, M.S.Attwood, T.K.

(2014) Protein Sci. 23: 627

  • DOI: 10.1002/pro.2445
  • Primary Citation of Related Structures:  3ZEW, 3ZFX, 3ZFY

  • PubMed Abstract: 
  • The EphB receptors have key roles in cell morphology, adhesion, migration and invasion, and their aberrant action has been linked with the development and progression of many different tumor types. Their conflicting expression patterns in cancer tiss ...

    The EphB receptors have key roles in cell morphology, adhesion, migration and invasion, and their aberrant action has been linked with the development and progression of many different tumor types. Their conflicting expression patterns in cancer tissues, combined with their high sequence and structural identity, present interesting challenges to those seeking to develop selective therapeutic molecules targeting this large receptor family. Here, we present the first structure of the EphB1 tyrosine kinase domain determined by X-ray crystallography to 2.5Å. Our comparative crystalisation analysis of the human EphB family kinases has also yielded new crystal forms of the human EphB2 and EphB4 catalytic domains. Unable to crystallize the wild-type EphB3 kinase domain, we used rational engineering (based on our new structures of EphB1, EphB2, and EphB4) to identify a single point mutation which facilitated its crystallization and structure determination to 2.2 Å. This mutation also improved the soluble recombinant yield of this kinase within Escherichia coli, and increased both its intrinsic stability and catalytic turnover, without affecting its ligand-binding profile. The partial ordering of the activation loop in the EphB3 structure alludes to a potential cis-phosphorylation mechanism for the EphB kinases. With the kinase domain structures of all four catalytically competent human EphB receptors now determined, a picture begins to emerge of possible opportunities to produce EphB isozyme-selective kinase inhibitors for mechanistic studies and therapeutic applications.


    Organizational Affiliation

    AstraZeneca PLC, Alderley Park, Cheshire, SK10 4TG, United Kingdom.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
EPHRIN TYPE-B RECEPTOR 2
A
298Homo sapiensGene Names: EPHB2 (DRT, EPHT3, EPTH3, ERK, HEK5, TYRO5)
EC: 2.7.10.1
Find proteins for P29323 (Homo sapiens)
Go to Gene View: EPHB2
Go to UniProtKB:  P29323
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.27 Å
  • R-Value Free: 0.263 
  • R-Value Work: 0.235 
  • Space Group: P 1
Unit Cell:
Length (Å)Angle (°)
a = 34.590α = 92.65
b = 41.190β = 97.15
c = 54.470γ = 114.79
Software Package:
Software NamePurpose
SCALAdata scaling
BUSTERrefinement
XDSdata reduction
PHASERphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2014-01-08
    Type: Initial release
  • Version 1.1: 2014-03-05
    Type: Database references
  • Version 1.2: 2014-04-09
    Type: Database references
  • Version 1.3: 2014-05-07
    Type: Database references