3UP6

Crystal structure of a putative cell adhesion protein (BACOVA_04078) from Bacteroides ovatus ATCC 8483 at 2.80 A resolution


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.250 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.205 

wwPDB Validation 3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

A Distinct Type of Pilus from the Human Microbiome.

Xu, Q.Shoji, M.Shibata, S.Naito, M.Sato, K.Elsliger, M.A.Grant, J.C.Axelrod, H.L.Chiu, H.J.Farr, C.L.Jaroszewski, L.Knuth, M.W.Deacon, A.M.Godzik, A.Lesley, S.A.Curtis, M.A.Nakayama, K.Wilson, I.A.

(2016) Cell 165: 690-703

  • DOI: 10.1016/j.cell.2016.03.016
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Pili are proteinaceous polymers of linked pilins that protrude from the cell surface of many bacteria and often mediate adherence and virulence. We investigated a set of 20 Bacteroidia pilins from the human microbiome whose structures and mechanism o ...

    Pili are proteinaceous polymers of linked pilins that protrude from the cell surface of many bacteria and often mediate adherence and virulence. We investigated a set of 20 Bacteroidia pilins from the human microbiome whose structures and mechanism of assembly were unknown. Crystal structures and biochemical data revealed a diverse protein superfamily with a common Greek-key β sandwich fold with two transthyretin-like repeats that polymerize into a pilus through a strand-exchange mechanism. The assembly mechanism of the central, structural pilins involves proteinase-assisted removal of their N-terminal β strand, creating an extended hydrophobic groove that binds the C-terminal donor strands of the incoming pilin. Accessory pilins at the tip and base have unique structural features specific to their location, allowing initiation or termination of the assembly. The Bacteroidia pilus, therefore, has a biogenesis mechanism that is distinct from other known pili and likely represents a different type of bacterial pilus.


    Organizational Affiliation

    Joint Center for Structural Genomics, http://www.jcsg.org; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Electronic address: wilson@scripps.edu.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
hypothetical protein BACOVA_04078
A, B
347Bacteroides ovatus ATCC 8483Mutation(s): 0 
Gene Names: BACOVA_04078
Find proteins for A7M1U4 (Bacteroides ovatus (strain ATCC 8483 / DSM 1896 / JCM 5824 / NCTC 11153))
Go to UniProtKB:  A7M1U4
Protein Feature View
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
MSE
Query on MSE
A,BL-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

Unit Cell:
Length ( Å )Angle ( ˚ )
a = 78.043α = 90
b = 91.138β = 90
c = 106.356γ = 90
Software Package:
Software NamePurpose
MolProbitymodel building
PDB_EXTRACTdata extraction
SHELXphasing
SHARPphasing
XSCALEdata scaling
BUSTER-TNTrefinement
XDSdata reduction
SHELXDphasing
BUSTERrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2011-12-21
    Type: Initial release
  • Version 1.1: 2014-12-24
    Changes: Structure summary
  • Version 1.2: 2017-11-08
    Changes: Refinement description
  • Version 1.3: 2018-01-24
    Changes: Database references
  • Version 1.4: 2020-04-22
    Changes: Database references, Derived calculations