3SYN

Crystal structure of FlhF in complex with its activator


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.063 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.181 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Structural basis for the molecular evolution of SRP-GTPase activation by protein.

Bange, G.Kummerer, N.Grudnik, P.Lindner, R.Petzold, G.Kressler, D.Hurt, E.Wild, K.Sinning, I.

(2011) Nat.Struct.Mol.Biol. 18: 1376-1380

  • DOI: 10.1038/nsmb.2141

  • PubMed Abstract: 
  • Small G proteins have key roles in signal transduction pathways. They are switched from the signaling 'on' to the non-signaling 'off' state when GTPase-activating proteins (GAPs) provide a catalytic residue. The ancient signal recognition particle (S ...

    Small G proteins have key roles in signal transduction pathways. They are switched from the signaling 'on' to the non-signaling 'off' state when GTPase-activating proteins (GAPs) provide a catalytic residue. The ancient signal recognition particle (SRP)-type GTPases form GTP-dependent homo- and heterodimers and deviate from the canonical switch paradigm in that no GAPs have been identified. Here we show that the YlxH protein activates the SRP-GTPase FlhF. The crystal structure of the Bacillus subtilis FlhF-effector complex revealed that the effector does not contribute a catalytic residue but positions the catalytic machinery already present in SRP-GTPases. We provide a general concept that might also apply to the RNA-driven activation of the universally conserved, co-translational protein-targeting machinery comprising the SRP-GTPases Ffh and FtsY. Our study exemplifies the evolutionary transition from RNA- to protein-driven activation in SRP-GTPases and suggests that the current view on SRP-mediated protein targeting is incomplete.


    Organizational Affiliation

    Heidelberg University Biochemistry Center, Heidelberg, Germany. gert.bange@bzh.uni-heidelberg.de




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Flagellar biosynthesis protein flhF
A, B, C, D
296Bacillus subtilis (strain 168)Mutation(s): 0 
Gene Names: flhF
Find proteins for Q01960 (Bacillus subtilis (strain 168))
Go to UniProtKB:  Q01960
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
ATP-binding protein YlxH
E, F, G, H
23Bacillus subtilis (strain 168)Mutation(s): 0 
Gene Names: ylxH
Find proteins for P40742 (Bacillus subtilis (strain 168))
Go to UniProtKB:  P40742
Small Molecules
Ligands 4 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GDP
Query on GDP

Download SDF File 
Download CCD File 
A, B, C, D
GUANOSINE-5'-DIPHOSPHATE
C10 H15 N5 O11 P2
QGWNDRXFNXRZMB-UUOKFMHZSA-N
 Ligand Interaction
SO4
Query on SO4

Download SDF File 
Download CCD File 
A, B, C, D
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
MG
Query on MG

Download SDF File 
Download CCD File 
A, B, C, D
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
AF3
Query on AF3

Download SDF File 
Download CCD File 
A, B, C, D
ALUMINUM FLUORIDE
Al F3
KLZUFWVZNOTSEM-UHFFFAOYSA-K
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.063 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.181 
  • Space Group: P 1
Unit Cell:
Length (Å)Angle (°)
a = 50.790α = 92.26
b = 63.360β = 100.96
c = 114.500γ = 94.25
Software Package:
Software NamePurpose
PHENIXphasing
ADSCdata collection
MOSFLMdata reduction
PHENIXrefinement
SCALAdata scaling
PHENIXmodel building

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2011-11-09
    Type: Initial release
  • Version 1.1: 2012-05-23
    Type: Database references