3RHZ

Structure and functional analysis of a new subfamily of glycosyltransferases required for glycosylation of serine-rich streptococcal adhesions


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.223 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.184 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural and Functional Analysis of a New Subfamily of Glycosyltransferases Required for Glycosylation of Serine-rich Streptococcal Adhesins.

Zhu, F.Erlandsen, H.Ding, L.Li, J.Huang, Y.Zhou, M.Liang, X.Ma, J.Wu, H.

(2011) J Biol Chem 286: 27048-27057

  • DOI: 10.1074/jbc.M110.208629
  • Primary Citation of Related Structures:  
    3QKW, 3RHZ

  • PubMed Abstract: 
  • Serine-rich repeat glycoproteins (SRRPs) are a growing family of bacterial adhesins found in many streptococci and staphylococci; they play important roles in bacterial biofilm formation and pathogenesis. Glycosylation of this family of adhesins is e ...

    Serine-rich repeat glycoproteins (SRRPs) are a growing family of bacterial adhesins found in many streptococci and staphylococci; they play important roles in bacterial biofilm formation and pathogenesis. Glycosylation of this family of adhesins is essential for their biogenesis. A glucosyltransferase (Gtf3) catalyzes the second step of glycosylation of a SRRP (Fap1) from an oral streptococcus, Streptococcus parasanguinis. Although Gtf3 homologs are highly conserved in SRRP-containing streptococci, they share minimal homology with functionally known glycosyltransferases. We report here the 2.3 Å crystal structure of Gtf3. The structural analysis indicates that Gtf3 forms a tetramer and shares significant structural homology with glycosyltransferases from GT4, GT5, and GT20 subfamilies. Combining crystal structural analysis with site-directed mutagenesis and in vitro glycosyltransferase assays, we identified residues that are required for UDP- or UDP-glucose binding and for oligomerization of Gtf3 and determined their contribution to the enzymatic activity of Gtf3. Further in vivo studies revealed that the critical amino acid residues identified by the structural analysis are crucial for Fap1 glycosylation in S. parasanguinis in vivo. Moreover, Gtf3 homologs from other streptococci were able to rescue the gtf3 knock-out mutant of S. parasanguinis in vivo and catalyze the sugar transfer to the modified SRRP substrate in vitro, demonstrating the importance and conservation of the Gtf3 homologs in glycosylation of SRRPs. As the Gtf3 homologs only exist in SRRP-containing streptococci, we conclude that the Gtf3 homologs represent a unique subfamily of glycosyltransferases.


    Organizational Affiliation

    Department of Pediatric Dentistry and Microbiology, University of Alabama at Birmingham, Schools of Dentistry and Medicine, Birmingham, Alabama 35294, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Nucleotide sugar synthetase-like proteinAB339Streptococcus parasanguinisMutation(s): 0 
Gene Names: nssgtf3
EC: 2.4.1
Find proteins for B5A7L9 (Streptococcus parasanguinis)
Explore B5A7L9 
Go to UniProtKB:  B5A7L9
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
UDP
Query on UDP

Download CCD File 
A, B
URIDINE-5'-DIPHOSPHATE
C9 H14 N2 O12 P2
XCCTYIAWTASOJW-XVFCMESISA-N
 Ligand Interaction
CL
Query on CL

Download CCD File 
B
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.223 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.184 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 77.176α = 90
b = 193.862β = 90
c = 96.251γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
PHENIXmodel building
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

  • Deposited Date: 2011-04-12 
  • Released Date: 2011-06-01 
  • Deposition Author(s): Zhu, F., Li, J., Wu, H.

Revision History 

  • Version 1.0: 2011-06-01
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2011-08-10
    Changes: Database references